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Abstract The binding energy of a hydrogen-like impurity

in a thin size-quantized wire of the InSb/GaAs semicon-

ductors with Kane’s dispersion law in a magnetic field B

parallel to the wire axis has been calculated as a function of

the radius of the wire and magnitude of B, using a varia-

tional approach. It is shown that when wire radius is less

than the Bohr radius of the impurity, the nonparabolicity of

dispersion law of charge carriers leads to a considerable

increase of the binding energy in the magnetic field, as well

as to a more rapid growth of binding energy with growth

of B.
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Introduction

The investigation of shallow impurity and excitonic states

in various confined systems, such as quantum wells,

quantum well wires (QWW) and quantum dots (QD) [1–3]

in external magnetic and electric fields are of great interest

for a better understanding of their properties, as well as for

their potential application in optoelectronic devices [4, 5].

Photospectroscopy experiments, carried out on n-type

GaAs in magnetic fields, have revealed transitions involv-

ing the so-called metastable impurity states [6]. These

states, associated with the free electron Landau levels,

modified by the Coulomb interaction between the donor ion

and electron, are known as Landau-like states [7].

In earlier work, Zhilich and Monozon [8] variational

procedure to calculate the energies of Landau-like states of

shallow donors is used. However, this method applies only

for extreme values of magnetic field. The variational

method of investigating these states were developed in [9–

16] as well as in [7] for a semiconductor with parabolic

bands.

At present the stage of experimental and theoretical

investigations of Landau-like states in bulk semiconductors

and their heterostructures, may be considered completed.

Of great interest is the study of Landau-like states in low-

dimensional semiconductors, since the reduction of

dimensionality leads to an increase in binding energy of

Landau-like states. Investigations in magnetic fields are of

particular interest for understanding the basic physical

properties of nanostructures, in particular, of QWW. Here,

magnetic confinement potential competes with the geo-

metric confinement potential depending on the strength and

orientation of B [17]. The magnetic length can be varied

from values which are larger than the typical lateral

dimensions of QWW and QD, to values which are smaller

than these dimensions.

The binding energy of the ground state of a hydgrogenic

donor in a GaAs QWW in the presence of a uniform

magnetic field has been calculated in [18]. The calculations

were performed for an axial localization of the impurity for

the cases of both infinite and finite potential barriers.

The calculation in [18–22] are carried out within the

framework of the effective-mass approximation for the

semiconductor QWW with parabolic bands. The calcula-

tions of the binding energy of the hydrogen-like impurity in

magnetic field in a QWW of A3B5 semiconductors with

nonparabolic bands is of great interest. A3B5 semiconduc-

tors usually have small effective masses, great dielectrical

constant v, which means that the Bohr radius of the
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impurity is larger in comparison with QWW radius

achievable at present. It should be noted that the binding

energy of the hydrogen-like impurity increases when the

size of the confining potential is of the order or less of than

the Bohr radius [23].

The binding energy of the hydrogen-like impurity in a

QWW of A3B5 semiconductors has been calculated in [24]

as a function of the radius of the wire and the location of

the impurity with respect to the axis of the wire, using a

variational approach. It is shown that the binding energy in

Kanes semiconductors [25] is larger than in standard case

for all values of the shift parameter.

As it is known [26], the nonparabolicity of the disper-

sion law leads to a considerable increase of the binding

energy in the magnetic field, as well as to a more rapid

nonlinear growth of binding energy with B.

The binding energy of a hydrogen-like impurity in a thin

size-quantized wire of InSb/GaAs semiconductors [27]

with Kane’s dispersion law has been calculated as a

function of the radius of the wire and the location of the

impurity with respect to the axis of the wire, using a var-

iational approach. It is shown that when wire radius is less

than the Bohr radius of the impurity, the nonparabolicity of

dispersion law of charge carriers leads to a considerable

increase of the binding energy.

In this paper this analogy is applied for the investigation

of binding energy of hydrogenlike shallow donor in a thin

size-quantized wire of the InSb/GaAs semiconductors in a

magnetic field, parallel to the wire axis. Calculations have

been performed using the variational approach, developed

in [27].

Binding Energy Calculations

Consider the system consisting of the semiconducting wire

of radius R1 with the dielectric constant v1, having the

coating of radius R2 immersed in the infinite environment

(Fig. 1a).

In the system under consideration, when the potential

energy of an electron is of the form (Fig. 1b) in the pres-

ence of a magnetic field B, parallel to the wire axis, we’ll

approximate the wire potential by the finitely high potential

well

VðrÞ ¼
0; q\R1;

V0; R1 � q�R2;
1; q[ R2;

8
<

:
ð1Þ

where V0 is the value of the potential energy jump at the

boundary of the wire and the coating layer

(V0 = (Eg2�Eg1)Q). In two-band approximation of Kane’s

dispersion law, analogous to the relativistic law of

dispersion [26], the eigenfunctions and eigenvalue spectra

of electron are the solutions of the Klein-Gordon equation

in the wire of InSb and GaAs with standard dispersion law

l2s4 þ s2 p̂ þ e

c
A

� �2
� �

W10 ¼ ðE0 þ ls2Þ2W10; ð2Þ

p̂ þ e
c A

� �2

2l
W20 þ V0W20 ¼ E0W20; ð3Þ

where s is the parameter characterizing the nonparabolicity

of bands (s& 108 cm/s, l = 0.016 l0 for InSb) and related

with the forbidden bandgap Eg by the relation Eg = 2 ls2

with the boundary condition W(R) = 0, A is chosen as

A ¼ Au ¼ Bq=2; Aq ¼ Az ¼0
� �

[26].

The solution of the Eq. (1) in cylindrical coordinates

normalized within the range q � R and q � R are

W0ðq;u; zÞ

¼

N0ffiffiffiffiffiffi
2pL

p eikze�n=2
1F1ð�a01; 1; nÞ; 0�q\R1;

N0ffiffiffiffiffiffi
2pL

p eikze�n=2 1F1ð�a01;1;nRÞ
Uð�a0

01
;1;nRÞ Uð�a0

01; 1; nÞ; R1 �q�R2;

0; q[ R2;

8
>><

>>:

ð4Þ

where N�2
0 ¼ a2

c

R nR

0
e�nn mj j

1F2
1ð�a mj j;l; mj j þ 1; nÞdn is the

normalization constant, L is the wire length, k, m, l are

quantum numbers, n = q 2/2ac
2, ac ¼ �hc=eBð Þ1=2

is

magnetic length, 1F1 (a, b, n) is the confluent

hypergeometric function, a|m|l is determined by the

boundary condition that the wave function vanishes at the

surface of the wire, when q = R

1F1ð�a mj jl; mj j þ 1; d2=2a2
cÞ ¼ 0:

For the electron energy spectrum we have
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Fig. 1 Schematic drawing of the system
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E0 ¼� ls2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2s4 þ �h2s2k2
z þ 2ls2�hx a01 þ 1=2ð Þ

q

¼
P2

z

2l
þ V0 þ �hx a001 þ 1=2

� �
; ð5Þ

where kz is the z-component of the wave vector, x = eB/l c.

The equations determining the electronic states in an InSb/

GaAs semiconductor wire in the case when a fixed Coulomb

center is localized on the wire axis, with the potential

Uðq; zÞ ¼ � e2

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

p

in the presence of a magnetic field B, are

l2s4 þ s2 p̂ þ e

c
A

� �2

 �

W1 ¼ E þ ls2 þ Uðq; zÞ
� �2

W1;

ð6Þ

p̂ þ e
c A

� �2

2l
W2 þ ðV0 � Uðq; zÞÞW2 ¼ EW2: ð7Þ

To determinate hydrogen-like impurity states we shall

apply the variational method developed in [18]. For the

ground state (m = 0, l = 1), we shall choose the trial wave

function in the from

Wðq;u;zÞ

¼
Ne�n=2

1F1ð�a01;1;nÞe�k
ffiffiffiffiffiffiffiffiffi
q2þz2

p
; q\R1;

Ne�n=2 1F1ð�a01;1;nÞRÞ
Uð�a0

01
;1;nRÞ Uð�a0

01;1;nÞe�k
ffiffiffiffiffiffiffiffiffi
q2þz2

p
; R1�q�R2;

0; q[R2;

8
>><

>>:

ð8Þ

where k is the variational parameter, N�2¼�2p d
dkðKþMÞ

is the normalization constant,

K ¼
Z R

0

e�q2=2a2
c

1F2
1ð�a01; 1; q2=2a2

cÞK0ð2kqÞqdq;

M ¼ 1F1ð�a01; 1; nRÞ
Uð�a0

01; 1; nRÞ
Z 1

R

e�q2=2a2
c U2ð�a0

01; 1; q2=2a2
cÞK0ð2kqÞqdq;

K0 (2k q) is the modified Bessel function of the second

order, U2(�a0
01, 1;n) and 1F1 (a, b, n) is the confluent

hypergeometric functions.

Taking into consideration Eqs. (6)–(8), and (5) the

binding energy, as well as in [26], is found as the difference

Eb (R,B) = E01 � Ei (R,B).

Discussion of Results

The dependence of binding energy of the impurity in effec-

tive Rydberg R* in the InSb/GaAs quantum wire from the

wire thickness in dimensionless units y1 = R1/a, k ? k a,

a = a10a (a is the effective Bohr radius of impurity

a = 500 Å, a ¼ �h2v=le2; Q = 0.6), x = a 10R = 2.4048,

q = tR for two different values of magnetic field (B1 = 10 T

and B2 = 40 T) are shown on Fig. 2 (curves1 and 2).

The analogous curves 10 and 20 are for a semiconductor

QWW with parabolic dispersion law GaAs/AlAs, obtained

in [18].

As follows from Fig. 2, the curves 1 and 2 as well as 10

and 20 coincide at y? 0 (practically in the range y � 0.1);

in an infinite barrier case the binding energy diverges,

when y ? 0 for any magnetic strength. At such values of

the QWW radius the binding energy of impurity is mainly

determined by geometric confinement of QWW. The

binding energy in the nonparabolic case is essentially

greater than in a parabolic case at the same values of the

wire radius and the magnetic field.

Thus in units R* at y1 > 0.4 (y2 = R2/a, R2 = a/2) our

results are close to the results of [18]. For the case

B = 10 T, when y > 0.4 (R > 200 Å) the values of binding

energies for InSb/GaAs and GaAs/AlAs semiconductor

wires are actually the same. The nonparabolicity doesn’t

play essential role when the radius of wire is big enough.

This increase is considerable when wire thickness is less

than the Bohr radius of an impurity electron (y1 < 0.4).

The dependence of binding energies in effective Ryd-

berg R* on the values of the magnetic field B in InSb/GaAs

quantum wire for various thickness (y1 = 0.2, R1 = 100 Å

and y2 = 0.4, R2 = 200 Å) are shown on Fig. 3 (the curves

1 and 2). As on Fig. 3, the curves 10 and 20 are shown for a

hypothetical QWW with parabolic bands, but with the

same parameters as in InSb/GaAs. For a fixed value of d

the binding energy in both cases increases as a function of

the magnetic field due to the increasing compression of the

wave function with magnetic field. As follows from Fig. 3,

at one and the same value of y the growth of binding

energy depending on the magnetic field is more rapid for a

Fig. 2 The binding energy of the ground state of hydrogen-like

impurity (in units of R*) as a function of y1 in the magnetic field

(1, 10—B = 10 T; 2, 20—B = 40 T), when impurity center is localized

on the wire axis: 1,2—for the InSb/GaAs quantum wire; 10,20—for the

GaAs/AlAs semiconductor wire
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nonparabolic dispersion law in comparison with a para-

bolic case. As in [18] the binding energy growths more

rapidly from magnetic field in thick wires.

When B ?? the geometric confinement of QWW does

not play any role and the binding energy is defined by the

magnetic confinement. Fig. 3 shows that difference in

binding energies for InSb/GaAs and GaAs/AlAs are more

essential for a 100 Å wire than for 200 Å wire for the same

value of B = 10 T. In the range B < 10 T (R = 200 Å),

when the nonparabolicity is not substantial [24], a coinci-

dence of the asymptotic behavior of the corresponding

curves for InSb/GaAs QWW (1) and for GaAs/AlAs QWW

(10) was observed. In the range B � 40 T the binding

energies for 200 Å-wire (with nonparabolic dispersion law)

have the same value as for 100 Å-wire (with parabolic

dispersion law).

At y ?0, the binding energy approaches infinity Eb ?
?, which is related with the choice of the infinite well

model, for the wire potential. For a quantative comparison

with the experimental data we used Larsen’s results [28]

for the binding energy of shallow impurity in such a

magnetic field B that creates the same confinement, as the

wire potential, i.e.:aH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c�h=eH

p
� R [26]. In the case

when y1 = ac/a = R1/a = 0.2 we have obtained the fol-

lowing value for the binding energy Eb = 8.5R*, (in InSb

R* = 0.6 � 10�3 eV). In the semiconductor wire of GaAs/

AlAs Eb = 7.7R*.

As it follows from the dependence obtained (see Fig. 2

or Fig. 3), the binding energy in Kane’s semiconductors is

greater than the similar quantity in a standard case for all

values of the wire radius and the magnetic field.

I’d like to express my gratitude to Dr. Wang and my

colleague Dr. Dvoyan for attention towards my research.
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