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Abstract In this paper, we propose the first numerical

study of nanotube-based torsional oscillators via devel-

oping a new multiscale model. The edge-to-edge

technique was employed in this multiscale method to

couple the molecular model, i.e., nanotubes, and the

continuum model, i.e., the metal paddle. Without

losing accuracy, the metal paddle was treated as the

rigid body in the continuum model. Torsional oscilla-

tors containing (10,0) nanotubes were mainly studied.

We considered various initial angles of twist to depict

linear/nonlinear characteristics of torsional oscillators.

Furthermore, effects of vacancy defects and tempera-

ture on mechanisms of nanotube-based torsional

oscillators were discussed.
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Introduction

Since the discovery of carbon nanotubes (CNTs) [1] in

1991, these special cylindrical nanostructures have

been intensively studied and discussed. Their extraor-

dinary mechanical and electrical properties [2] ensure

that CNTs will play an essential role in the design of

nanoscale devices, such as nanotweezers [3], nanogears

[4], nanotube motors [5], and axial nano-oscillators [6].

Recently, a nanoelectromechanical device [7–9] based

on an individual CNT serving as a torsional spring and

mechanical support has been successfully fabricated.

Williams and co-workers [7, 8] reported fabrication of

nanoscale mechanical devices, which consist of a

suspended lever, i.e., the ‘‘paddle,’’ connected by

CNTs as torsion beams to stationary leads. Papadakis

et al. [9] used similar techniques to synthesize so-called

torsional oscillators. The metal paddles in their exper-

iments were on CNTs so that the tubes were strained

primarily in torsion. In addition, they predicted that

one of their oscillators could have the resonance

frequency of 0.1 MHz. Applications for this type of

oscillator include being used as sensors and clocks for

high-frequency electronics.

Although experimental observations have indicated

the potential applications of nanotube-based torsional

oscillators, the mechanisms have not been studied

thoroughly. Numerical methods, especially molecular

dynamics (MD) simulation, have become a powerful

tool for revealing complex physical phenomena [6].

Unfortunately, no numerical analysis of nanotube-

based torsional oscillators is reported so far due to the

limitation of MD on length scales. A torsional oscil-

lator may contain up to billions or trillions of atoms

because of the large dimensions of the metal paddle.

Therefore, intensive computation results in the infea-

sibility of MD models of torsional oscillators.

Recently developed multiscale modeling techniques,

such as the bridging domain coupling method [10],

have shown promise in treating phenomena at nano

and larger scales. Based on the edge-to-edge coupling

method [11], we develop a multiscale method to study

the mechanical behavior of nanotube-based torsional

oscillators. In the proposed multiscale model, the

nanotube is modeled with molecular dynamics while
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the metal paddle is modeled as continua. To simplify

the simulation, the metal paddle is further modeled as

a rigid body. We will investigate mechanisms of

torsional oscillators at various initial angles of twist.

Effects of defects and temperature on mechanisms of

nanotube-based torsional oscillators will also be con-

sidered.

Multiscale modeling

In a nanotube-based torsional oscillator, a part of the

nanotube is embedded in the metal paddle. We believe

this portion of the nanotube has an insignificant effect

on the momentum of inertia of the metal paddle.

Therefore, the nanotube in this oscillator can be

viewed as two individual tubes connecting with the

metal paddle, as shown in Fig. 1, which illustrates the

multiscale model of a carbon nanotube-based torsional

oscillator.

In such a multiscale model, the total domain, W 0, is

divided into three sub-domains: two molecular

domains (carbon nanotubes), W M, and one continuum

domain (the metal paddle), WC. This differs from

previous research [10] in that there was an overlapping

subdomain between the continuum and molecular

domains. Indeed, the molecular and continuum

domains are attached with each other via the interfaces

Gint in this paper. In other words, there are some

carbon atoms on the interface Gint. In Fig. 1, l is the

length of the carbon nanotube at each side, and d

represents the diameter of the tube. The metal paddle

has the dimensions of length a, width b, and thickness

c. In this paper, we assume that nanotubes attached

with the metal paddle on each side have the same

length.

In a torsional oscillator studied here, the axes of the

nanotubes coincide with each other and are assumed to

pass the centroid of the metal paddle. The axes of the

nanotubes also coincide with the axis that the metal

paddle rotates about, as shown in Fig. 1. Therefore, the

metal paddle mainly has the motion of torsion. We

believe that the metal paddle has no large deformation

during its rotation. Therefore, the metal paddle can be

simplified as a rigid body. The equations of motion are

J€h ¼ T; ð1Þ

where J is the angular moment of inertia of the metal

paddle to its centroid, h is the rotation angle of the

metal paddle, and T is the torque applied on the metal

paddle. The torque results from forces of the atoms

located on the interface Gint due to the torsion of

nanotubes. It has been observed [9] that vertical

deflections of nanotubes could be negligible

compared to torsional deflections. Therefore, the

torque T can be computed by:

Tez ¼
X

I

rI � FI ; ð2Þ

where FI is the atomic force on atom I that is located at

the interface between the nanotube and the metal

paddle, and rI is the position vector of atom I with

respect to the tube axis. Both FI and rI are projected on

the x–y plane, while the tube axis is denoted by ez.

In the molecular model, molecular dynamics is

utilized. We employ the modified Morse potential

function, proposed by Belytschko and Xiao [12], to

describe the interaction between bonded carbon

atoms. Since the modified Morse potential consists of

the bond stretching energy and the bond angle-bending

energy, simply gluing carbon atoms on the molecular/

continuum interface will not account for the bond

angle-bending energy between the nanotubes in the

molecular model and the one in the continuum model,

although the tube in the continuum model is ignored

due to the assumption of no deformation. Here, we

employ the molecular/continuum coupling similar to

what proposed in the edge-to-edge coupling method

[11], in which the bond angle-bending potential at the

interface can be considered by introducing virtual

atoms and bonds.

Figure 2 illustrates the molecular/continuum cou-

pling technique utilized in this paper. Carbon atoms e,

f, and g are in the molecular domain, while atom g is

located at the interface. Corresponding to atom g, a

‘‘virtual atom’’ h is inside the continuum model. In

addition, bond gh is the so-called ‘‘virtual bond.’’ It

should be noted that only zigzag nanotubes are

considered in this paper. A similar strategy can be

conducted for other nanotubes such as armchair tubes.

Since the metal paddle is viewed as a rigid body, virtualFig. 1 Multiscale model of a CNT-based torsional oscillator
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bonds have no change in their length, so there is no

change in the bond-stretching energy of virtual bonds.

However, the angles between the virtual bonds and

their neighboring bonds in the molecular model, e.g.,

the ones between bonds gh and ge/gf shown in Fig. 2,

may change during the rotation of the metal paddle

and the torsion of the nanotube so that the bond angle-

bending potential exists at the molecular/continuum

interface. Such an angle-bending potential must be

considered in molecular dynamics simulations because

it affects the atomic forces of carbon atoms that are on

or close to the molecular/continuum interfaces. In the

example given in Fig. 2, those atoms include atoms e, f,

and g. Consequently, the equations of motion in the

molecular model are

mIxI ¼ fext
I � @ðE þ EvirtualÞ

@xI
; ð3Þ

where xI is the location of atom I and fI
ext is the external

force applied on the atoms. The external force can be

due to the gravity of the metal paddle. E is the

potential energy of the tubes in the molecular model;

Evirtual is the potential due to angle change between the

virtual bonds and other realistic bonds at the molec-

ular/continuum interfaces.

One of the keys in this multiscale modeling is to

identify the location of virtual atoms. We employ finite

element approximation by treating the entire metal

paddle as an eight-node block element. The kinetic

variables of a virtual atom are evaluated from eight

nodes located at vertices of the metal paddle.

At the beginning of a multiscale simulation, the

metal paddle is given an initial angle of twist. There-

fore, the displacements of atoms at the continuum/

molecular interfaces and virtual atoms can be deter-

mined through finite element approximation in the

continuum model as boundary conditions in the

molecular model. Molecular dynamics simulation in

the molecular model is conducted through solving the

equations of motion in Eq. 3. The Verlet velocity

algorithm is employed. At each time step, we use Eq. 2

to calculate the torque acting on the metal paddle. This

torque is due to the atomic forces of atoms on the

continuum/molecular interfaces. Then, the rotation of

the metal paddle can be determined by solving Eq. 1.

The above procedure is iterative until the target time is

reached.

Results and discussions

In this paper, we mainly consider torsional oscillators

that contain (10,0) tubes. We first study the mechanical

behaviors of torsional oscillators that are isolated

systems at zero temperature initially. Nanotubes with

the length of 4.12 nm connect and support the metal

paddle. The material of the metal paddle is gold, which

has a density of 19,300 kg/m3. The dimensions of the

metal paddle are: length of 4.18 nm, width of 10.0 nm,

and thickness of 3.2 nm. Consequently, the angular

moment of inertia of the metal paddle is 0.0237e–

36 kg m2. The metal paddle is initially given a twist

angle of 10�. With the multiscale simulation, we

obtained the evolution of angle change for the metal

paddle, as shown in Fig. 3. The resonant oscillation is

stable, and the calculated frequency is 3.34 GHz.

Here, we consider (10,0) tubes with various lengths,

including 8.38, 12.64, 16.90, and 21.16 nm. The calcu-

lated resonance frequencies are 2.35, 1.92, 1.67 and

Fig. 3 Evolution of angle change of the metal paddle in a
torsional oscillator containing (10,0) tubes

Fig. 2 The schematic diagram of virtual atoms/bonds at the
interface
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1.50 GHz, respectively. It can be seen that resonance

frequencies are inversely proportional to the square

root of the nanotube length. Furthermore, if the same

(10,0) nanotubes are used, but the angular moment of

inertia of the metal paddle is increased by 2, 4, and 8

times, the simulation outcomes indicate that resonance

frequencies are reduced by
ffiffiffi
2

p
, 2 and 2

ffiffiffi
2

p
times,

respectively. Based on the above data, the following

relation of frequencies between any two nanotube-

based torsional oscillators can be concluded:

f1

f2
¼

ffiffiffiffiffiffiffiffi
J2l2
J1l1

s

ð4Þ

where f1 and f2 are the frequencies, J1 and J2 the

angular moments of inertia of the metal paddles, and l1
and l2 the length of nanotubes in torsional oscillators 1

and 2, respectively. It should be noted that nanotubes

in those two torsional oscillators have the same

diameter.

It is known that the resonance frequency, f, of a

linear torsional oscillation system can be theoretically

predicted via the following equation:

f ¼ 1

2p

ffiffiffi
k

J

r
; ð5Þ

where k is the torsional stiffness of the embedded

linear torsional spring and J is the angular moment of

inertia of the paddle. Indeed, Eq. 4 can be derived

from Eq. 5 since nanotubes’ torsional stiffness is

inversely proportional to the length if nanotubes are

taken as linear torsional springs. At this point, the

proposed multiscale modeling is verified with theoret-

ical prediction.

In previous research [W.Y. Hou and S.P. Xiao,

submitted ], a carbon nanotube was observed to have a

constant torsional stiffness within small angles of twist.

Therefore, nanotubes can be viewed as linear torsional

elements, and frequencies of torsional oscillators can

be predicted via Eq. 4 or 5. However, carbon nanotu-

bes exhibit nonlinear characteristics when being

employed as torsional springs under large angles of

twist. If the angle of twist becomes larger, the nano-

tube’s torsional stiffness becomes smaller until the

torsional buckling occurs. In these cases, frequencies of

torsional oscillators cannot be predicted by Eq. 4 or 5

anymore. The developed multiscale method is an

alternative. For the torsional oscillator we studied

above, the calculated resonance frequency is 3.34 GHz

(see Fig. 3) when the initial angle of twist is 10�. If

initial angles of twist become 30� and 60�, the

resonance frequencies are dropped to 3.06 GHz and

2.49 GHz, respectively. It should be noted that we do

not consider the occurrence of buckling in this paper.

Research has shown that vacancy defects can dra-

matically reduce the stiffness, strength, and torsional

stiffness of nanotubes [W.Y. Hou and S.P. Xiao,

submitted, 13]. Therefore, we believe that vacancy

defects have significant effects on the resonance

frequencies of nanotube-based torsional oscillators.

Vacancy defects can be caused by ion irradiation,

absorption of electrons, or nanotube fabrication pro-

cesses. Such defects are modeled by taking out atoms,

followed by bond reconstruction [13]. In this paper, we

consider two uncertainties associated with vacancy

defects on nanotubes. One is the number of missing

atoms, and the other is the location of a vacancy defect.

Due to the unique structures of single-walled carbon

nanotubes, they can be mapped onto two-dimensional

(2D) graphene planes with a thickness of 0.34 nm.

Consequently, a 3D model can be simplified as a 2D

surface problem when considering vacancy defects on

nanotubes. On the other hand, since vacancy defects

occur on carbon nanotubes in a completely random

manner, we employ a homogeneous Poisson point

process to determine the occurrence probability of a

specified number of Poisson points, i.e., missing atoms

in this paper, via

PðNðAÞ ¼ kÞ ¼ e�kAðkAÞk

k!
; k ¼ 1; 2; 3 . . . ð6Þ

where A is the plane area, N(A) is the number of

Poisson points (missing atoms) on this area A, and k is

the Poisson point density (missing atom density) per

area.

For a given number of Poisson points, they are

deposed on a two-dimensional graphene sheet, to

which the considered nanotube can be mapped, at

random positions. We mark the carbon atoms, which

are the nearest ones to the Poisson points, as the

missing atoms. After taking out the missing atoms, we

perform bond reconstruction to generate one-atom,

two-atom, and/or cluster-atom vacancy defects. Even

for the same number of missing atoms, the numbers

and locations of vacancy defects can vary from case to

case. For example, a vacancy-defected (10,0) nanotube

shown in Fig. 4 contains five one-atom vacancies, two

two-atom vacancies, and one cluster-atom vacancy.

Fig. 4 A (10,0) nanotube with randomly located vacancy defects
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In this study, we choose (10,0) tubes with the length

of 4.12 nm as torsional springs for nanotube-based

torsional oscillators. The surface area of the carbon

nanotube is 20.24 nm2. The metal paddle has an

angular moment of inertia of 0.0237e–36 kg m2. The

following missing atom densities are considered: 0.1, 1,

2 and 3 nm–2. For each given missing atom density, 100

simulations are conducted. The number of simulations

for a specific number of missing atoms is based on its

probability via Eq. 6. Figure 5 shows the relationship

between the resonance frequency and the missing atom

density on the carbon nanotube surface. Due to

uncertainties of vacancy defects, the resonance fre-

quencies follow the Gaussian distribution. We can see

that on average a larger missing atom density results in

a lower resonance frequency since the nanotube with

more missing atoms generally has less torsional stiff-

ness. However, due to the uncertainties of vacancy

defects, it is possible that a torsional oscillator embed-

ding a nanotube with more missing atoms has higher

resonance frequency.

Previous research showed that temperature effects

were significant on mechanisms of some nanoscale

devices [6]. We first investigate temperature effects on

the frequencies of nanotube-based torsional oscillators.

(10,0) nanotubes with the length of 8.24 nm are

selected as torsional springs in resonant oscillators.

The metal paddle has a moment of inertia of

0.1261 · 10–36kg m2 with respect to the rotation axis,

i.e., tube axis. The oscillator has a frequency of

1.45 GHz when it is an isolated system. Here, we

conducted multiscale simulations at various tempera-

tures. In the molecular model, the Hoover thermostat

is employed [14] to maintain nanotubes at a constant

temperature. The frequencies are calculated based on

the oscillation of the metal paddle during the first

several cycles. The calculated frequencies are 1.44,

1.42, 1.40, and 1.35 GHz at 100, 300, 600 and 800 K,

respectively. It is evident that temperature has a slight

effect on the resonance frequencies of nanotube-based

torsional oscillators. However, we observed another

phenomenon: energy dissipation of the torsional oscil-

lators at a finite temperature.

Energy dissipation is always observed when nano-

scale devices are at finite temperatures [6] due to the

heat exchange between devices and their surroundings.

Here, we study the energy dissipation of torsional

oscillators with various frequencies, including 5.53,

10.99, 15.39, 30.30 and 38.46 GHz, at the room

temperature of 300 K. It should be noted that the

same (10,0) nanotubes with the length of 4.12 nm are

employed in those oscillators. Various frequencies are

due to different dimensions of the metal paddles. The

evolutions of the maximum angular kinetic energies of

those torsional oscillators are shown in Fig. 6. It is

evident that high frequency results in large energy

dissipation. For the torsional oscillator having the

frequency of 38.46 GHz, the system energy dissipates

85% during 2 ns. It is known that temperature is one of

the macroscopic parameters and is related to the

kinetic energy of atoms. We believe that the high-

speed rotation of the metal paddle drives large

vibration of atoms during the torsion of the nanotube.

Therefore, the temperature of the nanotube is higher

in the torsional oscillator with a higher resonance

frequency. Consequently, the loss of energy is faster

due to the high temperature gradient between the

torsional oscillator and its surrounding.

To validate the proposed multiscale modeling, we

employ the experimental outcomes of Papadakis et al.

[9] as the reference. They tested nine devices and

Fig. 5 Vacancy defect effects on the resonance frequency (solid
line represents mean values of resonance frequencies that follow
the Gaussian distribution; vertical lines represent + /– one
standard deviation)

Fig. 6 Energy dissipation of nanotube-based torsional oscillators
with various resonance frequencies at 300 K
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obtained resonance frequencies between 1.68 and

4.12 MHz. The comparison is illustrated in Table 1. It

can be seen that multiscale simulations provide close

values (F1) to experimental observations (F0) for

Devices 1 and 2. However, all the calculated frequen-

cies are lower than the experimental outcomes. This is

because we only model the outermost tube of the

multi-walled carbon nanotubes (MWNT) that were

utilized in the experiments. With the consideration of

fully mechanical coupling [9] between interlayer tubes,

we predict the resonance frequencies (F2), which are

close to the experimental results for Devices 5, 6, 7,

and 8. Furthermore, all the measured frequencies are

in the ranges of numerical solutions. Variations may be

due to vacancy defects on the nanotubes, as in the

preceding discussion.

Although nanotube-based torsional oscillators were

fabricated and observed through experimental tech-

niques, numerical studies have not been reported yet.

We propose a multiscale method in which the metal

paddle was treated as the rigid body while nanotubes

were modeled by molecular dynamics. The multiscale

method has advantages for investigating the nonlinear

characteristics of nanotube-based torsional oscillators,

including the effects of vacancy defects and tempera-

ture. Such a multiscale method can be extended to

model and study other nanodevices.
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