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Abstract The In-Sn binary alloy system exhibits several

unusual features that challenge crystallographic and ther-

modynamic expectations. We combine first principles total

energy calculation with simple thermodynamic modeling

to address two key points. First, we evaluate energies along

the Bain path to interpret the discontinuous transition

between the phases a-In (Pearson type tI2) and b-In3Sn
(also Pearson type tI2) that are identical in symmetry.

Second, we demonstrate that the solid solution phases b-
In3Sn and c-InSn4 (Pearson type hP1) exist at high tem-

peratures only, and they exhibit eutectoid decompositions

at low temperatures.

Keywords Ab Initio methods � enthalpy of formation �
phase diagram � thermodynamic stability

1 Introduction

In-Sn alloys exhibit lower melting temperatures and

improved thermal fatigue as compared with Pb-Sn sol-

ders;[1,2] they also exhibit superconductivity,[3,4] and they

form the basis for the transparent conductor Indium-Tin-

Oxide (ITO). In addition to their practical interest, their

experimentally determined alloy phase diagram poses

several scientific puzzles. This paper applies first principles

total energy and band structure calculations, and simple

thermodynamic modeling, to address these questions.

The assessed In-Sn binary alloy system[5] exhibits four

phases at room temperature and above, all with substantial

composition ranges. In order of increasing fraction of Sn,

the phases are: a-In, b-In3Sn (both share Pearson type tI2),

c -InSn4 (Pearson type hP1), and b-Sn (Pearson type tI4,

‘‘white tin). There exists a different, low temperature,

nonmetallic phase a-Sn (Pearson type cF8, ‘‘gray tin’’) that

has low In solubility and is stable below 286 K. a-In and b-
In3Sn are separated by a discontinuous transition with a

narrow coexistence range around Sn fraction x&9-11%,

despite sharing the same body-centered tetragonal structure

and symmetry space group (I4/mmm). This violates the

normal Landau-type model of solid-solid phase transfor-

mation that supposes group-subgroup relationships

between phases. We resolve the puzzle by evaluating the

energies along the Bain path of cubic $ tetragonal

deformation. We also explore the differences in inter-

atomic bonding between the a and b structures.

The experimentally reported solubility range of c
appears nearly temperature-independent and persists

towards low temperatures. This suggests a low temperature

configurational entropy, in apparent violation of the Third

Law of Thermodynamics.[6,7] We propose that c actually

decomposes eutectoidly as temperature drops. b-In3Sn also

decomposes eutectoidly. The solubility of Sn in a-In van-

ishes at low temperature, while the solid solution b-Sn
transforms to a-Sn with limited In solubility.
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2 Methods

Our calculations follow widely used methods.[8] We utilize

the Vienna Ab-Initio Simulation Package VASP[9] to carry

out first principles density functional theory (DFT) total

energy calculations in the Perdew-Burke-Ernzerhof gen-

eralized gradient approximation.[10] We adopt projector

augmented wave potentials[11,12] and maintain a fixed

energy cutoff of 241.1 eV (the default for Sn). We relax all

atomic positions and lattice parameters using the PREC

Accurate precision setting, and increase our k-point den-

sities until energies have converged to within 0.1 meV/

atom, then carry out a final static calculation using the

tetrahedron integration method. Certain other settings are

discussed below as needed.

Our structures and phase diagrams are drawn from the

ASM phase diagram database[13] and from the Inorganic

Crystal Structure Database[14] (ICSD), supplemented with

original publications. For solid solution phases we take

16-atom supercells at a variety of compositions and enu-

merate all possible configurations using enumlib.[15] The

supercells of the a and b tI2 structures are 2x2x2. Super-

cells of c -InSn4.hP1 are based on an orthorhombic

supercell of the hexagonal primitive cell. For b-Sn.tI4, we
take a H2xH2x2 supercell. All configurations are fully

relaxed, and only the lowest energy configuration is

employed in the subsequent analysis.

Given total energies for a variety of structures, we cal-

culate the enthalpy of formation DHFor, which is the

enthalpy of the structure relative to a tie-line connecting

the ground state configurations of the pure elements.[16]

Formally, for a compound of stoichiometry In1-xSnx with

Sn fraction x we define

DHFor ¼ H In1�xSnxð Þ� 1� xð ÞH Inð Þ�xH Snð Þ

where all enthalpies are per atom. Vertices of the convex

hull of DHFor constitute the predicted low temperature

stable structures. For structures that lie above the convex

hull, we calculate the instability energy DE as the enthalpy

relative to the convex hull.

2.1 T? 0 K Limit

Composition-dependent calculated formation enthalpies

are displayed in Fig. 1. Notice that the known stable low

temperature phases of pure In and Sn are at DHFor = 0, by

definition, while all other formation enthalpies are positive.

This implies that there are no thermodynamically

stable compounds in the T ? 0 K limit. In particular, it

supports the existence of a lower temperature limit for

existence of the intermetallic b-In3Sn phase. It also

resolves the apparent third-law violation of the c -InSn4
phase by showing that it does not extend to 0 K.

Observe that the composition dependent energy of each

phase is nearly linear in the composition, x. Small devia-

tions from linearity reflect specific configurations repre-

sentative of the solid solutions. Straight lines in Fig. 1 are

least-squares fits constrained to pass through the endpoint

at x = 0 or x = 1. We obtain

DHa ¼ 0 þ 0:1x DHg ¼ 40 þ 0:1 x� 1ð Þ

DHb ¼ 0:009þ 0:1x DHbSn ¼ 41þ 0:00017 x� 1ð Þ

Although DHa\DHb at x = 0, the lines cross in the

vicinity of x = 0.1 (in the middle of the experimental

coexistence range), and b is favored over a for larger

amounts of Sn. The enthalpy of c turns up sharply for

x\ 3/4 (not included in fit) because In-In neighbors cannot

be avoided. The energy of b-Sn exceeds the energy of c -

InSn4 for all compositions. As b-Sn.tI4 is known to be a

high temperature phase, its stability must be due to some

entropic effect, most likely atomic vibrations.[17,18]

2.2 a-b Transition

The assessed In-Sn phase diagrams show a clear discon-

tinuous transition from a to b as the Sn fraction increases.

Curiously, the phases have identical Pearson types and

space group symmetries; it is unclear why they should be

distinct phases. The explanation lies in their c/a ratios,

where c/a[H2 for a while c/a\H2 for b. Consider a
family of tI2 structures with varying c/a ratios. This is the

so-called Bain path.[19] When c/a = 1 the structure is body-

centered cubic. At c/a = H2 it is face-centered cubic. For

all other c/a the structure is body-centered tetragonal.

As illustrated in Fig. 2, the energy of In.tI2 has a single

minimum as a function of atomic volume in the vicinity of

27.5 Å3/atom, but exhibits two minima as a function of c/a.

Fig. 1 Formation enthalpies DHFor of In-Sn alloys calculated within

density functional theory. Solid lines are linear fits to calculated

enthalpies
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One deep minimum is at c/a& 1.51[H2, and the other is

a shallow minimum at c/a & 1.36\H2.

The valence electron count (VEC) increases with x be-

cause Sn lies one column to the right of In in the periodic

table. We mimic the effect of alloying by increasing the

electron count through the NELECT setting of VASP.

Figure 3 shows how the minima evolve as functions of the

VEC. For low VEC the high c/a ratio is energetically

preferred while high VEC prefers low c/a. The crossover

point is around VEC = 13.125, corresponding to compo-

sition x = 0.125, close to the experimental a-b coexistence

range and to the crossing point in Fig. 1. In all cases the

two minima are separated by a barrier, which causes the a-
b transition to be discontinuous.

To explore the physical mechanism driving the a-b
transition, we investigate the spatial distribution of the

excess charge at elevated VEC using the difference in

charge density

Dq rð Þ ¼ qSC rð Þ � qAtomic rð Þ

where qSC is the self-consistent charge density, and qAtomic

is a superposition of atomic charge densities. For VEC =

13 (the VEC of pure In), qAtomic must be scaled by VEC/

13.

Figure 4 plots q (r) at low/high c/a with low/high VEC.

All figures are at volume 27.5 Å3/atom, and the VASP

charge density units are (electrons/Å3) x (cell volume).

These figures were created with the assistance of

VESTA.[20] Concentrations of charge can be interpreted as

covalent bonds between atoms. Evidently, at VEC = 13/

atom, there is little charge accumulation at the energeti-

cally disfavored low c/a (part (a)) but at the energetically

preferred high c/a (part (b)) charge accumulates along

nearest neighbor bonds within the horizontal plane. These

bonds favor a low value of a. In contrast, at VEC = 13.25/

atom (the VEC of In3Sn) and the energetically preferred

low c/a (part (c)) a strong charge concentration forms along

cell body diagonals. These bonds prefer to reduce the

c axis; the minimum bond length for fixed volume would

occur at c/a = 1.

2.3 Phase Diagram

To model the composition- and temperature-dependent

phase diagram we must model the set of Gibbs free ener-

gies {Gi(x,T)} of all phases i2{a, b, c, b-Sn, a-Sn}, then
find the convex hull of the free energies.[8] We will not

concern ourselves with the liquid phase, and hence we

restrict our attention to temperatures below & 400 K. Our

goal is to gain qualitative understanding that reveals the

physical origins of the transitions. We will treat chemical

configurational (substitutional) entropy through ideal

mixing,

S xð Þ=kB ¼ �x ln xð Þ � 1� xð Þ ln 1� xð Þ;

and express G(x,T) = DHFor (x)-TS(x) for each phase i. As

a-Sn.cF8 phase is experimentally known to have low sol-

ubility of In, we restrict it to x = 1 with S = 0. We will also

discuss, but not directly use, the vibrational free energy

Fv ¼ kBT

Z
dv g vð Þln hv=kBTð Þ

where g(m)is the vibrational density of states. The elec-

tronic entropy is negligible.

Unfortunately, within this model, neither c nor the b-Sn
phase is predicted to be stable within our temperature

range. The difficulty can be traced to the enthalpy differ-

ence between those phases and the low temperature phase

a-Sn, which DFT predicts to be 40 meV/atom,

Fig. 2 Contour plot of In.tI2 energies as a function of atomic volume

(horizontal axis, in Å3/atom) and c/a (vertical axis)

Fig. 3 Energy vs. c/a ratio for tI2 structures of volume 27.5 Å3/atom
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approximately double the experimentally reported

value.[21] Alternate pseudopotentials and exchange-corre-

lation potentials fail to resolve the matter. At x = 1, the

a$b transition of elemental tin is presumably driven by

vibrational entropy, and this is supported by the high fre-

quency optical modes in Sn.cF8 that raise the vibrational

free energy (see Fig. 5). Our calculated vibrational free

energies place the transition at 490 K, far above the

experimentally reported 286 K. This overestimate is not

adequately resolved in the quasiharmonic approximation.

Given this difficulty we resort to ad-hoc adjustments of

the energies and free energies at x = 1. Specifically, we

reduce the x = 1 intercepts of c and b-Sn by 6 and 9 meV,

respectively, in order to approximately match their exper-

imental phase boundaries at 400 K. Then we define a

temperature-dependent free energy of a-Sn to match the

experimental free energy difference of a- and b-Sn.[21]

Within these approximations, we identify phase boundaries

by solving the equations

Gi

xi
¼ Gj

xj
¼

Gj xj
� �

� Gi xið Þ
xj � xi

Only solutions on the convex hull are retained.

Figure 6 displays the resulting phase diagram. Due to

the approximations made we expect only qualitative

validity. The key features to observe are the low temper-

ature eutectoid decompositions of the b and c intermetallic

solid solutions. These phases are stabilized by their

chemical configurational entropy, and they exist at high

temperatures only. Decomposition of b has been previously

suggested.[5]

The stability of c has proven problematic. We propose it

should decompose below a temperature around 245 K. In

contrast, most existing phase diagrams[22–25] display a

Fig. 4 Difference charge

densities Dq (r) at various VEC
(units e/atom) and c/a. Cut
planes and isosurfaces reveal

the locus of excess charge

density. Color bars range blue-

green-red; isosurfaces are at

0.00195 for VEC = 13 and at

0.003 for VEC = 13.25 (Color

figure online)

Fig. 5 Vibrational densities of states. A Gaussian smearing of 0.05

THz has been applied for clarity.
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broad composition range extending towards low tempera-

ture. Two recent investigations,[26,27] however, do indicate

a narrowing of the phase with decreasing temperature. Note

that the left-hand boundary of c is frozen at x = 0.75 by the

kink in DHFor. We have artificially smoothed out the

approach of the right-hand boundary to this limit.

3 Conclusion

Our first-principles total energy calculations give insight

into otherwise puzzling features of the In-Sn phase dia-

gram. We address two main points. First, we explain the

distinction between the tI2 phases, a-In and b-In3Sn on the

basis of variation of the energy along the Bain path. At c/

a = H2 the otherwise-tetragonal structures become face

centered cubic. This symmetric structure occurs at a local

maximum of the energy, with the nearby minima corre-

sponding to a- with c/a[H2, and b- with c/a\H2.

Second, we argue that solid solutions b-In3Sn and c -

InSn4 exist only at elevated temperatures, because their

formation enthalpies are strictly positive. Eutectoid

decomposition of b has been demonstrated experimen-

tally,[23] which is remarkable given the low temperature of

the transformation (151 K in our calculation, 140 K

experimentally). Eutectoid decomposition of c has not been
conclusively demonstrated experimentally. Early phase

diagrams illustrate the composition range extending

towards low temperatures, although some recent studies

suggest a possible narrowing of the range. We predict a

nearly temperature-independent range bounded at low Sn

fraction by the kink in energy at x = 3/4, and on the right

hand-side by coexistence with b-Sn. However, the range is
quickly cut off below 225 K due to competition with a-Sn.
c can transform martensitically to b-Sn,[7,28] but not to a-
Sn owing to its distinct crystal structure, cF8 (diamond).

Presumably the dynamics of decomposition to a-Sn is too

sluggish to readily observe.

Our goal of first-principles phase diagram prediction

was not fully met, because of our inability to accurately

model the a$b transformation of pure elemental Sn. The

c-InSn4 and b-Sn phases should not exist at all according to
our calculated energies. Correcting this problem may

require a post-DFT electronic structure methods such as the

random phase approximation.[29] The overestimate of the

a$b energy difference lends support to this possibility.

Alternatively, fully anharmonic vibrational free

energies[17] may prove to be required as part of the

solution.
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