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Abstract The Alkemade theorem goes back to a very

fundamental paper on the graphical description of ther-

modynamic equilibrium problems from 1893 (van Rijn

van Alkemade in Z Phys Chem 11: 289-327, 1893). It is

one of the most helpful implements for the construction of

the liquidus surface of ternary phase diagrams. In its

original form, it allows to find the direction of falling or

increasing temperature along the monovariant reaction

lines forming the boundaries of the primary crystallization

fields. The theorem is valid for systems with any number of

phases; however, its geometrical construction rule is only

defined for the case of stoichiometric phases and it is not

clear how to apply the theorem in the case of phases with

extended homogeneity ranges. Some examples from a

ternary, transition-metal-based system containing phases

with large homogeneity ranges are presented, and the

usefulness and limits of applicability of the theorem are

discussed.

Keywords Alkemade theorem � liquidus surface � phase
diagrams

1 Introduction

The design of novel materials requires the knowledge of

the amount and composition of coexisting phases, which is

information that can be obtained from phase diagrams.

However, this information is not sufficient to predict the

properties of the material. A factor that is essential to the

behavior of the material–especially in the case of alloys for

structural applications–is the microstructure resulting from

the production process. In most cases, such kind of mate-

rials are produced by solidification from the liquid state

(e.g., by casting or additive manufacturing), because usu-

ally (ignoring the rare cases of coexistence of two or more

immiscible liquid phases) all components can be mixed to

form a homogeneous (liquid) phase. The corresponding

solidification path then is the most important factor that

determines how the microstructure of the material will

look. This information is available from the phase diagram

of the corresponding alloy system, where the relevant part

is the boundary separating the liquid phase from the region

containing solid phase(s). For the following discussion we

will focus on the ternary case, where this boundary is the

liquidus surface of the system. This liquidus surface is a

three-dimensional surface that usually is shown as a pro-

jection on the composition triangle. It is divided by a

number of lines into different fields each of which indicates

the composition range of primary crystallization of a par-

ticular phase. The lines emanating from the invariant

reactions in the binary boundary systems and separating the

primary crystallization fields correspond to the monovari-

ant equilibria between the phases of the two adjacent pri-

mary crystallization fields and the liquid. The traces of the

composition of the liquid in these monovariant equilibria

will be called boundary lines, and the particular points

where three such boundary lines meet mark the invariant
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reactions of the ternary system. Experimentally, the

determination of the primary phases often can be easily

done from the as-solidified microstructure, from which the

position of the monovariant boundary lines can be fixed. A

crucial piece of information to then infer the course of the

solidification path is the temperature change along the

boundary lines, where the temperature can both increase

and decrease. This is usually very difficult to determine

experimentally. A great help can be the so-called Alke-

made theorem.

After introducing this Alkemade theorem in its original

form in the following section, the shortcomings of the the-

orem in the case of phases with extended homogeneity

ranges are explained in the third section and demonstrated in

the subsequent section using the example of a real, ther-

modynamically well-described ternary system. In the final

discussion section, an attempt is made to show towhat extent

the theorem still allows conclusions to be drawn about the

liquidus surface and the solidification path even in the case of

phases with extended homogeneity ranges. It should be

noted here that it is in noway the aim of this article to replace

the existing computational tools such as the Calphad

method. Rather, the purpose is to discuss the theorem as such

and its validity and usefulness in establishing reliable

experimental liquidus surfaces of ternary systems.

2 The Alkemade Theorem

In 1876 and 1878, J. Willard Gibbs published his seminal

two-part work ‘‘On the Equilibrium of Heterogeneous

Substances’’.[1] This treatise, in which he described his

ideas on the geometric representation of thermodynamic

quantities, forms the basis for the description of phase

equilibria by phase diagrams. Motivated by Gibbs’ work,

A. C. van Rijn van Alkemade, a teacher at the higher civil

school in Apeldoorn in the Netherlands, published an

extensive discussion about equilibria of salt solutions with

solid phases (originally written in Dutch,[2] and soon

thereafter also published in a German version).[3] The

paper contained a finding that was cited a few years later by

Wilder D. Bancroft in his book ‘‘The Phase Rule’’[4] in a

formulation still used today as the ‘Alkemade theorem’.

Let us assume a ternary system with any number of stoi-

chiometric phases. Then the theorem states that the point of

intersection of a straight line on the liquidus surface pro-

jection connecting the compositions of any two phases (the

so-called Alkemade line) with the boundary line (or its

extension) between the primary crystallization fields of

these two phases corresponds to a temperature maximum

on this boundary line. This means that along the boundary

line of two primary crystallization fields, the direction of

decreasing temperature is always away from the Alkemade

line of the corresponding phases. At the same time, this

point of intersection is a temperature minimum for the

liquidus on the Alkemade line. As a side note and before

this theorem is explained in the following with the help of

two simple examples, it should be briefly mentioned here

that Bancroft was not really sure when writing his book

whether the theorem actually has general validity. This is

obvious from his text, where he writes ‘‘Until the number

of contradictions is somewhat increased or until it has been

shown under what circumstances the theorem does not

apply, it may be accepted provisionally as accurate’’.[4] It

took more than 100 years until the Alkemade theorem was

finally proven by Malakhov.[5]

Figure 1 illustrates the Alkemade theorem using as

example a simple ternary system formed by three immis-

cible components A, B, and C and one binary compound

AB. The invariant reactions of the binary boundary sys-

tems, all of which are of the eutectic type, are projected

onto the boundaries of the ternary triangle and marked as

e1-4. The monovariant lines emanating from these points

divide the composition triangle into the four primary

crystallization fields A, B, C, and AB. If we now connect

the compositions of the phases C and AB, this gives the

Alkemade line of these two phases (red dotted line in

Fig. 1). It intersects the boundary line of the primary

crystallization fields C and AB at the point X. As indicated

by the green arrows, the Alkemade theorem now implies

that the temperature along the boundary line decreases in

both directions away from the point X. At the same time,

this point marks a temperature minimum on the Alkemade

line.

Fig. 1 Illustration of the application of the Alkemade theorem on a

liquidus surface projection of a ternary system A-B-C with only one,

congruently melting binary compound AB (points e1-4 and I1-2 mark

the binary and ternary invariant reactions, respectively; the arrows

indicate the direction of decreasing temperature)
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It is important to note that the theorem holds for any two

phases of the system, i.e., it can be applied for the other

boundary lines A/C, A/AB, AB/B, and B/C as well. In these

cases, the respective Alkemade lines are always along the

binary boundaries of the composition triangle. For exam-

ple, the Alkemade line A-C meets the boundary line of the

two primary crystallization fields A and C (line connecting

e4 and I1) at point e4, which is why according to the

Alkemade theorem the temperature decreases from e4
towards I1. Moreover, and in agreement with the fact that

e4 is a binary eutectic, a conclusion of the Alkemade the-

orem is that the liquidus temperature in the binary

boundary system A-C increases on both sides of e4, since

this point is a temperature minimum on the Alkemade line.

Thus, the Alkemade theorem leads to two important

general conclusions for systems with phases with negligi-

ble homogeneity range:

– The addition of one or more components (B, C, ...)

which are not soluble in a phase A always results in a

lowering of the melting point or liquidus temperature.

– All invariant temperatures of a binary system are

lowered by the addition of a non-miscible third

component.

In the simple example presented in Fig. 1, the Alkemade

line AB-C intersects the corresponding boundary line.

However, the theorem also applies in cases where this is not

true. A corresponding, again very simple example is shown

in Fig. 2. Here, the binary phase AB forms peritectically in

the binary system A-B and its Alkemade line does not

intersect with the AB-C boundary line (connecting I1 and I2).

In this case, the extension of the boundary line is used, which

meets the Alkemade line at the point X. Then again the

theorem can be applied saying that the temperature along the

boundary line decreases in the direction away from the point

X, i.e., it decreases from I2 to I1. Consequently, the ternary

invariant reaction I2 is a transition-type reaction (L ? B

AB ? C) and I1 is of the eutectic type (L $ A ? AB ?

C), while in the example of Fig. 1 both ternary invariant

reactions are of the eutectic type.

3 The ‘Problem’ of Solid Solubility

The original formulation of the theorem applies only to

phases with fixed compositions, i.e., there is no statement

about its validity in the case of phases with (extended)

homogeneity ranges and how it might then be applied. The

theorem is mentioned frequently in the literature especially

in the fields of mineralogy and ceramics,[6, 7] where the

occurring phases in most cases can be well described as

approximate ‘point phases’ and the theorem becomes very

useful for the determination of the often complex liquidus

surfaces. The problem that all phases have to be ‘point

phases’ with no solubility range as a prerequisite for the

application of the Alkemade theorem was, to the best of

our knowledge, mentioned only once in the literature. In

his extended work about ‘‘Eutectic-like and peritectic-like

reactions in ternary systems’’, J. van den Boomgaard

mentioned that ‘‘the ‘‘van Rijn van Alkemade’’ theorem

only holds in boundary cases in which the composition of

the solid phases is practically restricted to points in the

composition triangle’’.[8] As this kind of point phases

‘‘does not exist in a great number of systems’’, he con-

cluded that the theorem is not applicable in most cases as

there is no defined Alkemade line.[8]

Indeed, it is this lack of a rule on how to draw the

Alkemade line that starts the difficulties. This problem is

illustrated in Fig. 3. Here, the two phases C and AB exhibit

certain homogeneity ranges and it is no longer obvious

what should be the Alkemade line in this case. The set of

possible connecting lines between the two phases covers

the entire intermediate region bounded by the two dashed

gray lines in Fig. 3 (for simplification, we neglect here a

possible temperature dependence of the extension of the

homogeneity range; the shown size shall correspond to that

in the temperature range of the boundary line). Obviously,

an Alkemade line as introduced in the original theorem

does not exist. There are various particular compositions

that might be chosen as starting and end point of a hypo-

thetical Alkemade line. This could be, for example, the two

stoichiometric compositions of the phases C and AB,

which give line 1 in Fig. 3. Or, since often the composition

with the highest stability (highest melting point) of a phase

is not identical to the stoichiometric composition (as in the

later example of a real system; see Section 4), one could

alternatively choose the line connecting these stability

Fig. 2 Application of the Alkemade theorem for the case that the

Alkemade line does not intersect the corresponding boundary line

(designations as in Fig. 1)
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maxima (line 2 in Fig. 3). Another, third possible pair of

special compositions would be the points at the two phase

boundaries whose connection gives the shortest possible

line between the two phases (line 3 in Fig. 3). In all these

three cases, the theorem would at least allow the conclu-

sion that there must be a temperature maximum on the line

I1-I2 (which means that both invariant points I1 and I2
belong to ternary eutectics). However, the position of the

maximum on this boundary line remains unclear. It may

even be the case that there is no maximum: If the Alke-

made line were near the left boundary of the shaded region

to the left of point I1 (line 4), application of the theorem

would indicate that the invariant reaction at I1 is not

eutectic, but is a transition-type reaction, and there would

be no maximum on the AB/C boundary curve, but the

temperature along I1-I2 would continuously decrease.

Obviously, not only the position, but also the very exis-

tence of a maximum on the boundary curve is unclear.

In the following section we will first present an example of

an experimentally well-studied ternary system demonstrating

the difficulty to apply the theorem to real systems. After that

wewill have a closer look on the development of the equilibria

at temperatures near maxima on different boundary curves.

4 Real Systems

In contrast to most mineralogical and ceramic compounds,

intermetallic phases often have an extended homogeneity

range. As an example, Fig. 4(a) shows an experimentally

obtained isothermal section of the Al-Fe-Nb system (re-

drawn from Ref 9), where several intermetallic phases such

as Nb(Fe,Al)2, Nb6(Fe,Al)7, and Nb2Al extend far into the

ternary system. Moreover, in the Al-Fe binary boundary

system, the single-phase region of the (aFe) solid solution

and its B2-ordered superstructure phase FeAl cover a

composition range of more than 50 at.% Al.[10–12] On the

other hand, the system also contains some phases with only

very low solubility for the third element such as NbAl3 and

the Al-rich Al-Fe phases Fe5Al8, FeAl2, Fe2Al5, and Fe4-
Al13, making the Al-Fe-Nb system a well-suited candidate

to investigate the applicability of the Alkemade theorem.

Figure 4(b) shows the liquidus surface projection of the

Al-Fe-Nb ternary system as obtained from the experi-

mental work in (Ref 9, 13). Along the monovariant lines

(red lines), there are several temperature maxima (denoted

by blue dots as M1 to M5, numbered from the highest to the

lowest temperature), which allow to present and discuss the

above described problems in a real system.

The three most interesting cases are the maxima M1, M2,

and M3 on the boundary lines of the primary crystallization

field of the Laves phase Nb(Fe,Al)2, which has the largest

homogeneity range of all phases. Before we focus on them,

let us briefly discuss the other two maxima, M4 and M5. In

these cases, the Alkemade theorem can be applied (more or

less well) in its classical form. M5 is the maximum on the

boundary line between the congruently melting compounds

NbAl3 and Fe2Al5, which both have small composition

ranges. As predicted by the Alkemade theorem, the maxi-

mum is located at the intersection of the boundary line and

the line connecting both phases. In contrast to Fe2Al5, the

two neighboring compounds FeAl2 and Fe4Al13 both melt

peritectically and in both cases the situation is as shown in

Fig. 2, i.e., there is no maximum on the boundary line, but

the direction of falling temperature along the boundary

lines can be derived from the Alkemade theorem. The

fourth Al-rich Al-Fe compound Fe5Al8 also melts peritec-

tically. However, in this case the composition of the peri-

tectic point is well within the homogeneity range of the

phase and the intermediate region between Fe5Al8 and

NbAl3 intersects their boundary line leading to the maxi-

mum M4. It should be noted, however, that due to the non-

negligible homogeneity range of Fe5Al8, the position of the

maximum is not exactly defined, but may also be slightly

shifted on the boundary line to the left or right. Now let us

focus on the other three maxima.

The position of the maximum M3 in the Fe-rich corner,

which belongs to the boundary curve between the primary

crystallization fields of the Laves phase Nb(Fe,Al)2 and the

Fe solid solution (aFe)/FeAl, is well-established experi-

mentally, and, moreover, in this case the liquidus temper-

atures of two series of single-phase samples of both phases

involved were determined. Figure 5 shows the measured

Fig. 3 Liquidus surface projection of a simple ternary system similar to

that shown in Fig. 1, but with solubility ranges for the phases C and AB.

The shaded area bounded by the dashed gray lines marks the region of

possible connecting lines between C and AB. The two points marked

Tmax (C) and Tmax (AB) are arbitrarily chosen compositions that should

mark the points of maximum stability of the two phases. The four red

lines 1-4 are examples of particular lines, which connect some special

points of the system as discussed in the text
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liquidus temperatures of Nb(Fe,Al)2 (Fig. 5b) and (aFe)/
FeAl (Fig. 5c) as a function of the Al content (for constant

Nb content, i.e., in a direction parallel to the Al-Fe

boundary as illustrated in Fig. 5a). For both series of sin-

gle-phase alloys, there is a clearly visible temperature

maximum. The monovariant boundary line between the

two phases is a eutectic valley running approximately

parallel to the Al-Fe boundary. The corresponding com-

positions and temperatures are well determined, and a plot

of the obtained eutectic temperatures as function of the Al

content (Fig. 5d) clearly reveals the temperature maximum

M3. The Alkemade theorem, however, can obviously not

be applied in this case. Figure 5(a) indicates that the

position M3 is not related to the liquidus maxima of the two

phases. Likewise, a hypothetical Alkemade line connecting

the stoichiometric compositions of the two phases (which

should be NbFe2 and aFe) would not give the position of

the maximum. The situation is similar in case of the

maxima M1 and M2, where, however, the much lower

number of available experimental data does not allow a

precise determination of the positions of the maxima.

However, a thermodynamic description of the entire

ternary system is also available and has been published in

(Ref 14) Calphad-type modelling of the system resulted in

a very good description of the experimental data. Using the

set of optimized parameters, we have now calculated a

series of isothermal sections focusing on the temperature

ranges near the three maxima M1-M3 (for details of the

calculations and the list of the optimized parameters, see

Ref 14).

Starting from a temperature of 1680 �C, which is above

the melting maximum of the Laves phase Nb(Fe,Al)2
(1669 �C), we now follow the development of the shape of

the liquid phase field with decreasing temperature focusing

on the constriction of this phase field near the three maxima

and its separation into two liquid phase fields below the

maxima. At 1680 �C (Fig. 6a), the liquid phase covers the

entire ternary triangle below 50 at.% Nb (with the excep-

tion of a small two-phase field with the high-melting NbAl3
phase). At 1665 �C (Fig. 6b), i.e., just below the melting

maximum of the Laves phase Nb(Fe,Al)2, there is a small

island of this phase centered around 35 at.% Al (see also

Fig. 5b). Lowering the temperature to 1640 �C leads to a

growth of its composition range, and the beginning of a

constriction of the liquid phase field on the Nb-rich side (in

the direction of Nb2Al) is already visible (Fig. 6c). Just

below the temperature of the maximum M1 (Fig. 6d), the

liquid phase field has split into two parts. The direction of

the very narrow two-phase field Nb(Fe,Al)2 ? Nb2Al

indicates where the first tie line between Nb(Fe,Al)2 and

Nb2Al has formed at the maximum temperature. In the case

of point phases, this first connection between the two

phases would have been the Alkemade line. Here, as is

obvious from the position of the respective composition of

Fig. 4 Example for a ternary system with extended homogeneity ranges: (a) Isothermal section at 1000 �C and (b) liquidus surface of the Al-Fe-

Nb system (redrawn from Ref 9, 13)
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the Nb(Fe,Al)2 phase, there is no relation neither to the

point of maximum stability of Nb(Fe,Al)2 (marked with the

red triangle) nor to the stoichiometric composition NbFe2,

and also a connection of the two points resulting in the

shortest distance between the two phases (Al-rich end of

the Nb(Fe,Al)2 phase field and Nb-poor end of the Nb2Al

phase field) would have resulted in a tie line clearly dif-

ferent from the actual one.

With further reduction in temperature, the Nb(Fe,Al)2-
? Nb2Al two-phase field grows as the two three-phase

equilibria L ? Nb(Fe,Al)2 ? Nb2Al on the left and right

side move away from each other in opposite directions,

accompanied by shrinking of the two separated liquid

phase fields. In addition, a second constriction of the liquid

phase field can be observed in the region near the Al-Nb

boundary, which finally results in the maximum M2 and a

first equilibrium between Nb(Fe,Al)2 and NbAl3 (Fig. 7a).

In this case, the system chooses the shortest distance

between both phases (as in case 3 in Fig. 3), i.e. a con-

nection of the Al-rich end of the Nb(Fe,Al)2 phase field

with the narrow composition range of NbAl3.

Then, as the temperature continues to fall, the small,

disconnected phase field of liquid above M2 disappears at

1550 �C (Fig. 7b) in a eutectic reaction resulting in the

three-phase equilibrium Nb(Fe,Al)2 ? Nb2Al ? NbAl3.

The still extended liquid phase field near the Al-Fe

boundary continuously shrinks and starts to detach from the

Al-Fe boundary at 1530 �C in the Fe corner (Fig. 7c, see

also Fig. 5c). At 1450 and 1400 �C, a third constriction of

the liquid phase field becomes obvious at its Fe-rich end

(Fig. 8a and b). This results in another splitting of the liquid

phase field at the temperature of M3 resulting in a tie line

between Nb(Fe,Al)2 and (aFe) as indicated in Fig. 8c. As

already described above when presenting the experimental

results related to this maximum (Fig. 5), there is no

apparent relation between the position of the maximum, the

Fig. 5 (a) Fe-rich corner of the Al-Fe-Nb liquidus surface (a),

liquidus temperatures as a function of the Al content for the ternary

Laves phase Nb(Fe,Al)2 (b), the Fe solid solution (aFe)/FeAl, and the

eutectic formed by these two phases (d). The red points in (a) mark

the temperature maxima observed in (b-d) (redrawn from Ref 9)
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calculated phase compositions, and any particular compo-

sition points of the two involved phases. The remaining Fe-

rich liquid phase field disappears at the binary Fe-Nb

boundary at 1373 �C (reaction e3, Fig. 4b and 5d), while

the Al-rich liquid recedes further and further into the Al

corner (Fig. 8d), where it finally disappears at 654 �C in a

binary eutectic at the Al-Fe boundary very near to the Al

corner.[11]

Fig. 6 Calculated isothermal sections of the Al-Fe-Nb system at

(a) 1680 �C, (b) 1665 �C, (c) 1640 �C, and (d) 1598.9 �C (just below

the temperature of the maximum M1). The small red triangle in the

center of the Nb(Fe,Al)2 phase field marks the composition of

maximum stability of the ternary Laves phase Nb(Fe,Al)2, the two

small red triangles on the binary boundary lines correspond to the

temperature maxima of the congruently melting compounds NbFe2
and NbAl3
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5 Discussion

In discussing the validity, usefulness, and applicability of

the Alkemade theorem, one must distinguish between dif-

ferent goals that the theorem is intended to accomplish.

Either one is interested in the solidification path of a

material and what the microstructure will look like in the

solidified state, or one is interested in studying the liquidus

surface itself.

If we are thinking about the first topic, i.e., the solidi-

fication path, the equilibrium phases and the microstruc-

ture, we can say the following: In the case of a system with

(any number of) only point phases, i.e., in the situation for

which the Alkemade theorem was actually defined, there

are exclusively three-phase fields in the solidified state

(two-phase equilibria exist only for the special composi-

tions lying along the Alkemade lines, i.e., the two-phase

range is not a field but a line, which is actually obvious

already for geometric reasons). In this case, the knowledge

of the position of the maximum is very useful, because this

decides about the third phase, which will be in equilibrium

with the two phases connected by the Alkemade line.

Application of the theorem does not only yield the tem-

perature maxima and/or direction of falling temperature on

Fig. 7 Calculated isothermal sections of the Al-Fe-Nb system at (a) 1593.3 �C (just below the temperature of the maximum M2), (b) 1550 �C,
and (c) 1530 �C
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the boundary lines, but the Alkemade lines also divide the

system into different triangles, which for any alloy com-

position define the three equilibrium phases. In the simple

examples shown in Fig. 1 and 2, these are the two three-

phase fields A ? AB ? C and AB ? B ? C. However,

the theorem can also be applied in much more complex

systems under the only condition that the respective phases

are point phases (or have only narrow composition ranges),

examples are the above described maxima M4 and M5 in

the Al-Fe-Nb system.

Staying with the topic of solidification path, equilibrium

phases and microstructure, let us now consider the case of

non-negligible extended homogeneity regions. This situa-

tion is very different from the one above, and the Alke-

made theorem is not needed at all. In contrast to the above-

described condition of point phases, the position of a

maximum does not play a role for the prediction of the

finally solidified equilibrium phases, because there will be

a two-phase field composed of the respective phases the

existence and extension of which is not affected by the

Fig. 8 Calculated isothermal sections of the Al-Fe-Nb system at (a) 1450 �C, (b) 1400 �C, (c) 1380.7 �C (just below the temperature of the

maximum M3), and (d) 1370 �C
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position of the maximum. If the intermediate region

between the homogeneity ranges of two of such phases

intersects their boundary line, then for any alloy compo-

sition in this range the solidification will start with the

primary crystallization of one of the two phases (depending

in which primary crystallization field the alloy composition

lies) and the composition of the remaining, continuously

solidifying liquid will shift until it reaches the boundary

line where the solidification is finished. Consequently, the

direction of falling temperature on the boundary line is of

no importance for the solidified microstructure, since

solidification is already complete just at the moment when

the liquid composition arrives at the boundary line. The

irrelevance of the direction of falling temperature for the

microstructure of two-phase alloys can also be well illus-

trated by the Al-Fe-Nb system presented above. The most

extended two-phase region in this system is the (aFe)/
FeAl ? Nb(Fe,Al)2 two-phase field (see Fig. 4a). The sit-

uation is particularly simple because both phase fields and

the eutectic valley (Fig. 5a) extend approximately parallel

to the Al-Fe axis, i.e., at approximately constant Nb con-

tents. In this situation, the solidified microstructure of an

alloy of any composition in this two-phase field only

depends on its Nb content, while the Al content is (more or

less) irrelevant. The microstructure will consist of a

eutectic (aFe)/FeAl ? Nb(Fe,Al)2 matrix and primary

particles that are either (aFe)/FeAl or Nb(Fe,Al)2 depend-
ing on whether the Nb content is below or above the

eutectic boundary line. For a fixed Nb content, alloys with

different Al contents will exhibit the same microstructure

(a situation which provides an ideal playground for mate-

rial development, since the material properties will con-

siderably change in dependence of the Al content while the

microstructure does not). Here it becomes obvious that the

position of the maximum M3 does not play any role for the

microstructure.

If we are interested in studying the liquidus surface

itself, the situation is a bit different. As was already pointed

out by Boomgaard,[8] the Alkemade theorem only holds for

point phases, because in the case of extended homogeneity

ranges the problem already is that the Alkemade line is not

defined. He already suggested that this line should be

replaced by the intermediate region between the homo-

geneity ranges of the phases (as introduced in Fig. 3). For

the sake of abbreviation, we will now briefly refer to this

intermediate region between the phases as the ‘‘Alkemade

region’’. The occurrence of a temperature maximum

depends on the positions (i.e., compositions) of the two

invariant reaction points at the ends of the boundary line. If

the intersection line between the boundary curve of the two

phases and their Alkemade region is completely between

these two invariant reaction points, then there must be a

temperature maximum on the boundary curve in the
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intersected region (Fig. 9a). The exact position of the

maximum, however, cannot be determined by this proce-

dure. In the case that the Alkemade region of the two

phases also covers one of the invariant reaction points, it

cannot be concluded if there is a maximum on the

boundary curve or not (Fig. 9b). Finally, if there is no

intersection of the Alkemade region with the boundary line,

there will be no maximum on the curve, just as in the case

of point phases (Fig. 9c). But what is especially important:

Regarding the directions of falling temperature along the

boundary line, the idea of the Alkemade theorem still

works if we simply replace the ‘Alkemade line’ by the

‘Alkemade region‘. Just as in the case of the Alkemade

line, it is also true for the Alkemade region that the tem-

peratures to the left and right of this region will always

decrease along the boundary line in the direction away

from the Alkemade region (red arrows in Fig. 9).

It is now interesting to see how and if this more gen-

eralized view of the Alkemade theorem can be applied to

the above described maxima M1-M3 of the Al-Fe-Nb sys-

tem. Starting with the maximum M1 on the boundary line

between Nb(Fe,Al)2 and Nb2Al (see Fig. 4b), we can see

that the above introduced Alkemade region extends over a

wide area that covers a large part of the boundary line

between these phases (but not the entire boundary line as

the Al-rich end would remain uncovered) and in addition

covers the invariant reaction point P1 as well as parts of the

monovariant lines starting from this point (Fig. 10, blue

shaded area). Obviously, in this case the Alkemade theo-

rem does not give any information about the existence of a

maximum on the boundary line and we only learn that the

temperature at the right end of the boundary line decreases

to the right. This is different in the case of the maxima M2

and M3. The entire intersection of the Alkemade region of

the two phases Nb(Fe,Al)2 and NbAl3 (yellow shaded area

in Fig. 10) with their boundary line is within the limiting

invariant reactions E1 and E2, and therefore the Alkemade

theorem predicts that there must be a maximum M2 in this

intersecting composition range. The only missing infor-

mation is the exact position of M2 in the intersecting range.

Finally, the situation is again a little different for M3.

Although the Alkemade region of the two phases

Nb(Fe,Al)2 and (aFe)/FeAl is very large (brown shaded

area in Fig. 10), it only intersects with its own boundary

line that extends from the binary invariant reaction point e3
at the Fe-Nb boundary to the ternary reaction U3 at about

60 at.% Al. Again, the theorem predicts the existence of a

temperature maximum on the boundary line, but in this

case it could also be located at the binary boundary, i.e., at

e3.

As the examples show, the position of the maximum is

not predictable from simple geometric considerations.

Instead, the position of the temperature maximum is

determined by the position of the two-phase field, which

continuously narrows with increasing temperature until it

becomes a single tie line just at the maximum temperature

and composition. The direction of this special tie line, i.e.,

the corresponding compositions of the two phases are not

related to the stoichiometric phase composition or to their

composition of maximum stability.

6 Conclusions

The Alkemade theorem allows to find the direction of

falling temperature along the monovariant reaction lines on

liquidus surfaces and can be very useful for the construc-

tion of liquidus surface projections, especially when an

only insufficient or unreliable database exists that does not

allow a proper Calphad calculation. Although in its clas-

sical form it is only applicable to phases with negligible

homogeneity range, it can still be very useful for systems

with phases that extend over wide composition ranges. If

the Alkemade line, which is only defined for point phases,

is replaced by an ‘Alkemade region’, then the theorem can

still give valuable information about the direction of falling

temperatures and even the presence or absence of tem-

perature maxima can be predicted under special conditions.

However, the position of the maximum and the direction of

the respective tie line between the two corresponding

bFig. 9 Liquidus surface projection of a simple ternary system with

the phases C and AB showing some non-negligible homogeneity

range. Shown are different possibilities how the Alkemade region (the

shaded area bounded by the dashed gray lines) can intersect the C/AB

boundary line: (a) the intersection lies completely between the

invariant reaction points at the ends of the boundary line; then there

must be a temperature maximum on the boundary line with, however,

unknown position, and on both sides of the Alkemade region the

temperature decreases away from this region (red arrows), which is

why both invariant reactions will be ternary eutectics; (b) in this case,

it is not clear whether there is a maximum on the boundary line, but at

least it can be concluded that the temperature decreases on the right

side (red arrow), which determines the character of the invariant

reaction as eutectic; (c) if the Alkemade region does not intersect with

the boundary line, there is no maximum and the temperature must

decrease as indicated by the red arrow, which also defines the

character of the two invariant reactions (one is a transition-type and

the other one is a eutectic reaction) (Color figure online)
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phases at the maximum temperature cannot be derived

from the Alkemade theorem.
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