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Abstract A mean-field model has been developed to

simulate curvature-driven grain growth by exploring the

evolution of grain size distribution under arbitrary thermal

histories. The model was integrated into precipitation

module TC-PRISMA, so that the pinning effect of the

concurrently precipitated particles on the growing grains

can be considered by a modified, location-specific Zener

model. The developed model was validated against ana-

lytical calculations, and then applied to real alloy systems,

fed with assessed grain boundary energy and mobility data.

Its capabilities, limitations, and directions to improvements

have been discussed.

Keywords grain growth � kinetics � microstructure �
modeling � Zener pinning

1 Introduction

The progress of incorporating computational techniques

into materials research and development has been gaining

remarkable momentum in recent years, not only by

increasing demand from traditional metallurgical industries

and emerging new areas such as additive manufacturing

and high entropy alloys, but also by strategic projects such

as Integrated Computational Materials Engineering

(ICME) and Materials Genome Initiative (MGI). There

have been countless efforts to seek synergy of models

across different research areas and disciplines. Prof. John

Morral has been regarded as a model scientist in solid state

phase transformations who tirelessly broke research barri-

ers throughout his career. He and Purdy developed a

coarsening model for precipitation kinetics[1] that has been

widely used in various programs such as TC-PRISMA[2]

whose development the authors have been heavily involved

in. Particularly, Prof. Morral was an inspiring mentor to

one of the current authors (KW) and also encouraged and

guided him to employ phase field method to the investi-

gation of interdiffusion microstructures.[3]

The first purpose of the current work attempted to

extend the functionality of the precipitation program TC-

PRISMA to account for more microstructure information.

In solid state, grain structure plays such a critical role that,

to many researchers, it is the synonym of microstructure.

The attempt started with the investigation of normal grain

growth, and subsequently its efficient modeling that is

compatible with the existing precipitation tool. Therefore, a

mean field approach has been favored and thus imple-

mented. The ‘‘normal’’, or ‘‘continuous’’, grain growth is

defined as the average size increase of space-filling grains

with somewhat uniform size distributions, that is driven by

the curvatures, or the surface tensions (boundary energies)
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of their adjacent boundaries.[4,5] In metallurgical applica-

tions, these grains often refer to the polycrystals of the

matrix phase, which most likely contain other dispersed

second-phase particles. The driving force leads the curved

boundary to migrate toward its center of curvature. The

velocity, assuming a linear proportionality, is described as

�Mcj,[6] where M is the proportion coefficient, herein

after called grain boundary mobility. c is the grain

boundary energy while j is the curvature. The rate of

change of the volume of each individual grain is thus �Mc
times the integral of the mean curvature of all surrounding

boundaries.[7]

While mathematical integration of the mean curvature

over all the boundaries is a daunting task, von Neumann

found a surprisingly simple yet elegant expression for a

curvature-driven domain growth in two-dimensional space,

regardless of the shape of the domain[8]

dA

dt
¼ �2pMc 1� 1

6
n

� �
ðEq 1Þ

where dA
dt is the rate change of the domain area, and n is the

number of triple junctions around the domain. If the

domain is assumed to be a circle with radius R so that

dA ¼ 2pRdR, Eq 1 can be re-arranged as

dR

dt
¼ Mc

1
6
n R

� 1

R

 !
ðEq 2Þ

which insightfully implies that the growth rate is related to

its curvature (proportional to 1=R) in comparison to the

mean curvature of the whole system (a regular, uniform

hexagonal structure with n ¼ 6). The same can also been

shown in three-dimensional space, while MacPherson and

Srolovitz derived three-dimensional rate change of domain

volume as[9]

dV

dt
¼ �2pMc L Dð Þ � 1

6

Xn

i¼1
ei Dð Þ

� �
ðEq 3Þ

where LðDÞ measures the linear size of domain D and ei the

length of triple line (edge) i summed over all n triple lines

of D. Replacing volume change with dV ¼ 4pR2dR, a

similar formulation to Eq 2 can be obtained. These theories

justified the validity of the mean field approach proposed

by Hillert,[4] an analogy to the coarsening theory in dis-

persed second-phase precipitation.[10,11] The mean field

approach enables the description of grain structures using

grain size distribution (GSD) instead of average grain size,

so that size dependent properties like grain boundary

mobilities and misorientations can be investigated in the

future.

The second purpose of the current work is to study

simultaneous grain growth and precipitation processes. The

existence of second phase particles, and their interactions

with the migrating grain boundaries, are of wide industrial

interest in grain size control practice to achieve desired

mechanical properties. Abundant experimental information

indicates that grain growth can be drastically reduced, or

even completely stopped, in systems with appreciable

second-phase particles, indicating that the migration of

grain boundary can be effectively dragged when passing

through dispersed particles. The first theoretical analysis of

the particle inhibition effect came from Zener (quoted by

Smith[12]). He suggested that a particle could exert a pin-

ning force, described as a line tension opposite to the

migration direction, so that the normal grain growth would

be completely inhibited when the grain size reached a

critical maximum grain size Rz. In current paper, it is ter-

med ‘‘Zener radius’’ to avoid confusion with other grain

size nomenclature. In a general form, it can be expressed

as[13]

Rz ¼ K
r

f m
ðEq 4Þ

where r is the radius of the pinning particles and f the

volume fraction of the particles. K is a dimensionless

constant and m an exponential index for f . The original

Zener pinning theory assumed a maximum pinning force

that had K ¼ 4=3 and m ¼ 1, which has been found to be

inconsistent with the experimental information and many

modifications have been proposed since then, and a thor-

ough review has been conducted by Manohar et al.[13]

When applying to practical cases, many limitations of the

Zener theory should be realized. First, while Zener radius

refers to the maximum critical grain size that completely

stops growing, most experiments ignored the grain size

distribution, so that average grain size was used as Zener

radius and fitted parameters based on this assumption.

Secondly, all the original and modified models adjusted the

parameters K and m by relating final grain sizes to pre-

cipitate particle size and volume fractions, ignoring the

whole precipitation process. Another purpose of the current

work is thus to investigate the validity and limitation of the

pinning models when grain size distribution is explicitly

considered, subjected to the overall precipitation process

involving particle nucleation, growth, and coarsening.

2 Model Development

2.1 Normal Grain Growth

The normal grain growth model simulates the temporal

evolution of grain size distribution (GSD), analogous to the

precipitation simulation implemented in TC-PRISMA

using Kampmann and Wagner’s numerical algorithm.[14]

Therefore, the grain system has been represented by a GSD

J. Phase Equilib. Diffus. (2022) 43:866–875 867

123



function, gðRi; tÞ, which describes the number of grains

with radius Ri at time t. The grains are assumed of spher-

ical morphology. Following the mean field approach by

Hillert[4] in the spirit of von Neumann’s theory,[8] the

boundary motion of a grain with radius Ri is driven by its

curvature. Without pinning force, the boundary migration

rate has been described as

dRi

dt
¼ aMc

1

RCr

� 1

Ri

� �
ðEq 5Þ

where M is grain boundary mobility (m4=JsÞ and c is the

grain boundary energy (J=m2). a is a dimensionless scaling

constant, whose value is determined by fitting the numer-

ical results to analytical theory, which will be discussed in

the next section. RCr is the critical grain size. Not neces-

sarily the average grain size, it is determined by volume

conservation during grain growth process[15]

dV

dt
¼ 4p

X
i

gðRi; tÞR2
i dRi

dt
¼ 0 ðEq 6Þ

where the index i covers all sizes of grains. Substituting

Eq 5 into 6 thus enables the calculation of RCr.

RCr ¼
P

igðRi; tÞR2
iP

igðRi; tÞRi

ðEq 7Þ

In comparison, the average radius is defined as

R ¼
P

igðRi; tÞR3
iP

igðRi; tÞ

 !1=3

ðEq 8Þ

2.2 Zener Pinning

When there are n different precipitate phases in the alloy,

the pinning force combines contributions from all precip-

itate particles. As a first approximation, the average particle

radius rj of each phase j has been used to calculate its

pinning force. The pinning force, Pj (in unit of pressure),

from phase j can be evaluated in terms of Rz;j, the Zener

radius defined in Eq 4

Pj ¼
c
Rz;j

¼ c�zj ðEq 9Þ

whereas Zener radius Rz;j is more convenient when com-

paring with grain size and thus more intuitively straight-

forward, its inverse, zj, is proportional to the pinning

pressure, and thus more fundamentally correlated with the

drag force

zj ¼
1

Rz;j
¼ 1

Kj
�
f
mj

j

rj
ðEq 10Þ

In current model, different values of Kj and mj have

been selected based on the locations of the precipitate

phases, i.e., precipitated homogenously within the matrix

phase or along the grain boundaries, in accordance with the

fact that grain boundary particles provide larger pinning

force.[13,16] The overall pinning effect is the sum of that

from all precipitate particles, which also defines the inverse

of the overall Zener radius

z ¼
Xn

j¼1
zj ¼

1

Rz
ðEq 11Þ

Realizing that the drag force resists the grain boundary

motion, no matter whether in the growing (positive

velocity) or shrinking (negative velocity) direction, the

overall growth rate is expressed as[4]

dRi

dt
¼ aMc

1

RCr

� 1

R

� �
� 1

Rz

� �
ðEq 12Þ

The negative sign for term 1=Rz considers suppressing

the growing grains, when

1

RCr

� 1

R

� �
� 1

Rz
[ 0 ðEq 13Þ

while positive sign considers the dissolving grains, when

1

RCr

� 1

R

� �
þ 1

Rz
\0 ðEq 14Þ

and dRi

dt ¼ 0 when Ri lies between these two limits.

3 Results

3.1 Normal Grain Growth

The simulations of normal grain growth only considered a

single phase, in a polycrystal system. Two different initial

GSDs, one of log-normal distribution with standard devi-

ation r ¼ 0:2 and the other of Hillert distribution,[4] have

been utilized to simulate the normal grain growth. Log-

normal distributions with larger standard deviations

(r[ 0:2Þ have the risk of introducing abnormally large

grains, and hence have not been used.

Figure 1(a) shows their initial GSD shapes. We used a

plot of normalized number density distribution (number of

grains with a specific radius divided by overall number of

grains in the system) versus normalized grain radius (grain

radius divided by average grain radius) to illustrate GSD. A

reasonable grain boundary energy value of 0:5J=m2 was

used, while different grain boundary mobility values,

ranging from 10�16 to 10�12m4=Js, have been used to

perform the robustness and validation tests.
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The results indicate that the model predicts a steady-

state parabolic growth law. A typical result has been shown

in Fig. 2. For two different initial GSDs, the grain growth

behaviors are almost identical in the steady state, with

slight deviations at early stages. The steady-state GSDs for

both cases, shown in Fig. 1(b), follow a Hillert distribution,

in agreement with the analytical result.[4]

It has been observed from all the numerical experiments

that the critical radius, RCr defined in Eq 7, is rarely the

same as the average grain radius R, defined in Eq 8. In most

cases, RCr has a larger value.

Another purpose of these simulations is to determine the

value of a in Eq 5 so that the following parabolic equation

can be satisfied

R
2 � R0

2 ¼ cMðt � t0Þ ðEq 15Þ

where R0 is the average grain radius when steady state

begins at time t0. The numerical results suggested a � 2:3,

close to the theoretical approximation of a � 2.[4]

3.2 Zener Pinning

The particle pinning models offer a single parameter, Zener

radius Rz, as a criterion for the retarding force. Dealing

with non-uniform GSD, the current model does not

explicitly provide Rz from the output. Therefore, a

numerical experiment has been designed for the validation

process. For this purpose, the physical properties of the

alloy system are not relevant. Without loss of generality,

we selected Al-Sc system which is available from Thermo-

Calc’s free databases ALDEMO and MALDEMO. The

alloy had a composition of Al-4.0 at.% Sc with FCC_A1 as

matrix phase and AL3SC as precipitate phase. Same as in

normal grain growth studies, two initial grain size distri-

butions have been employed, with log-normal distribution

r ¼ 0:2 as well as with Hillert distribution.[4] A series of

numerical simulations have then been carried out, each

varied in average radius and volume fraction of precipitate

particles so that different pinning forces, and hence Zener

radii, could be generated. The Zener radius Rz of these

simulations, calculated using Eq 4, varied from 1 to

0.1 mm. Since both, the theoretical model and the current

model, do not consider particle size distribution (PSD)

effect on the pinning force, the choice of PSD can be

arbitrary. Theoretical models with different parameters K

and m in Eq 4 and 10 have been employed, as listed in

Table 1. To avoid the change of the pinning force due to

particle growth and coarsening, the precipitating particles

have been ‘‘frozen’’, which in TC-PRISMA can be

achieved by assigning an extremely small value, e.g. 10�15,

to the mobility enhancement pre-factor for bulk solute

diffusion in matrix phase, and a small interfacial energy,

0:01J=m2, to the precipitate phase. The grain growth was

then continued for an extended period, assuming a grain

boundary mobility of 10�14m4=Js, and grain boundary

energy of 0:5J=m2.

Figure 3 shows a typical temporal change of the average

grain sizes as the solid line. At the final stage, the growth

kinetics deviates from the parabolic curve and reaches a

plateau, indicating that the grain growth has been stopped

due to the pinning force. It should be noted that the final

average radius, calculated using Eq 8, does not match the

Zener radius Rz, but is rather significantly smaller. It has

also been found that average grain radius is usually smaller

than the critical radius RCr define in Eq 7, as shown by the

dotted line in Fig. 3. The assumption in most theoretical

analyses that they are the same, thus are not applicable and

can cause inaccuracies in quantitative calculations. A

detailed analysis of the GSD is thus needed to validate Rz.

Figure 4 shows the comparison of the initial (dotted line)

Fig. 1 (a) Initial and (b) steady-state grain size distributions for normal grain growth. The solid line has an initial log-normal distribution, and the

dashed line has an initial Hillert distribution
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and final (solid line) GSD when particle pinning has been

enabled. Unlike the Hillert distribution that was shown for

a precipitate-free system, the final GSD presents a trian-

gular, jib sail shape. Comparing with the initial GSD, the

shape is significantly narrower. Whereas the higher side

shrinks due to the reduction of the growth rate, there is a

distinct ‘‘cut’’ on the lower size so that the smallest size can

be determined easily. This is because that smaller grains

have faster dissolution rate that can escape from the pre-

cipitate particles and thus disappear completely. The size

of the smallest grain, Rm, is determined by Eq 14, using

equal sign instead

1

RCr

� 1

Rm

� �
þ 1

Rz
¼ 0 ðEq 16Þ

Re-arranging Eq 16 we may thus obtain

Fig. 2 (a) Calculated temporal change of average grain size, with

initial GSD of log-normal (solid line) and Hillert (dashed line)

distribution (b) Plot of square of average grain size with time.

Simulated with grain boundary mobility M ¼ 10�12m4=Js, and grain

boundary energy c ¼ 0:5J=m2

Table 1 Parameters used in Zener equation for validation purpose

K m Refs.

1.333 1.0 Zener[12]

0.222 0.93 Hillert[16]

1.333 0.93 Zener[12] ? Hillert[16]

1.7 0.5 Hillert[16]

0.17 1.0 Manohar et al.[13]

Fig. 3 The temporal change of average grain size (solid line) and

critical radius (dotted line) with Zener pinning. The initial grains have

a log-normal distribution with standard deviation r ¼ 0:2. The

precipitate particles have fixed size of 1:9lm and volume fraction

of 0.08. Zener parameters of K ¼ 4=3 [12] and m ¼ 0:93 [16]have been

used, given a Zener radius Rz ¼ 26:528lm according to Eq 4

Fig. 4 The initial (dotted line) and final (solid line) grain size

distribution, with the same pinning parameters used in Fig. 3

870 J. Phase Equilib. Diffus. (2022) 43:866–875
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Rz ¼
RCrRm

RCr � Rm
ðEq 17Þ

Therefore, Rz can be calculated from the numerical

results of RCr and Rm. Figure 5 shows the comparison of Rz

from theoretical analysis, Eq 4 and from numerical calcu-

lations, Eq 17. An excellent agreement has been obtained.

Another important observation is that the ratio of Rm to RCr

is around 0.5 to 0.6, less than 0.75 that was assumed in the

theoretical analysis by Hellman and Hillert.[17] In their

work, the value of 0.75, and further RCr ¼ R, were used to

derive Zener parameters K and m for the limiting average

grain size R in terms of volume fraction and size of the

precipitate particles. They admitted that this choice was

quite arbitrary and suggested careful experimental com-

parisons. The current numerical results confirm their con-

cerns. As a result, adjustment of Zener parameters is

required to reflect the discrepancy. It is interesting to notice

that for Rm ¼ 0:5RCr, Eq 17 has RCr ¼ Rz. The simulations

with log-normal initial GSD and narrower size range

(r ¼ 0:2) closely agree with this condition, as shown with

empty circles in Fig. 5.

The next numerical experiment employed a commercial

steel alloy to study the validity of the Zener model through

the simultaneous grain growth and precipitation processes.

The composition of the steel alloy is listed in Table 2. The

alloy system consists of ferrite (named BCC_A2 in data-

bases) as matrix phase and cementite (CEMENT-

ITE_D011) as precipitate phase. TCFE12 and MOBFE7

databases have been used for precipitation simulation

process. To fit the experimental data, a mobility enhance-

ment pre-factor of 0.2 was used, while all other parameters

were chosen as default settings in TC-PRISMA. A good

agreement in precipitation kinetics for annealing isother-

mally at 722 �C, with experimental data[17] has been

obtained, as shown in Fig. 6. Also shown in the figure is

the volume fraction change during the annealing, indicat-

ing that the current setting leads to a volume fraction

quickly approaching the equilibrium value.

For grain growth simulations, the grain boundary energy

was chosen to be a reasonable value of 0.5 J=m2 as in

previous calculations. The grain boundary mobility has

been modeled as an Arrhenius type

M ¼ M0exp � Q

RT

� �
ðEq 18Þ

where M0 is the pre-factor (m4=Js) and Q is the activation

energy (J=mol). There is a large discrepancy, in several

orders of magnitude, among experimental data regarding

the grain boundary mobility. The experimental grain

growth data from Hellman and Hillert[17] indicate that, for

this commercial alloy, the grain boundary mobility should

be in the magnitude of 10�16m4=Js. The closest match was

from Malow and Koch,[18] though their data, obtained from

nanocrystalline structures which reduce the grain boundary

mobility, are thus underestimated for the micro scale

grains. Therefore, the activation energy of 242; 000J=mol

was adopted from their work, while the grain boundary

mobility pre-factor was increased to 4� 10�3m4=Js, pro-

viding a grain boundary mobility of 7:9432� 10�16m4=Js

at 722 �C.
The first attempt used a set of K ¼ 0:222 and m ¼ 0:93

from Hillert[16] to calculate the pinning force. That gives a

Zener radius of about 8 lm according to Eq 4 with final

precipitate size and volume fraction data from experi-

ment.[17] The initial GSD was assumed to be a Hillert

distribution. Numerical tests indicate that the initial aver-

age grain size has a profound effect on the growth

behavior. Two of the results are presented in Fig. 7, one

with a small initial radius of 0.2 lm (Fig. 7a) and the other

with a larger initial radius of 3.2 lm (Fig. 7b). Without

pinning force, the grain growth curves (dashed) for both

cases follow a parabolic law as expected. When particle

pinning has been generated, on the other hand, they display

completely different growth paths. The grain growth with a

Fig. 5 Calculated Zener radius (filled triangles) against analytical

results[16]. The straight line represents a perfect match. The calculated

critical grain radii from initial log-normal grain size distribution with

r ¼ 0:2 are also shown as open circles

Table 2 Steel composition (wt.%)[17]

C S O N Al Fe

0.2 0.004 0.0004 0.001 0.001 Bal
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smaller initial grain size shows discontinuous, stepwise

behavior with three distinct plateaus. The first plateau

occurs at a very early stage over a very short period, when

cementite phase starts to nucleate. Since the size of

cementite nuclei is quite small while the volume fraction

quickly approaches to the equilibrium volume fraction, the

cementite particles exert a larger pinning force, i.e., smaller

Zener radius, according to Eq 4. As the initial grain size

was small and below the Zener radius, the grains stop

growing when reaching the Zener radius. As the cementite

particles enter fast growing stage, the pinning effect has

been loosened so that the ferrite grains can break and grow

sharply. The sharp increase in growth rate is since during

the previous plateau, smaller grains have been dissolved

leading to a narrower, more uniform GSD shape, and hence

a much faster growth rate. The grain growth thus outpaces

the precipitate growth, until the grain size reaches the

updated Zener radius which then leads to the second pla-

teau. The same process repeats until the third and final

plateau occurs and stabilizes since the precipitate particles

coarsen slowly and the grain size reaches the somewhat

stable Zener radius. During the multi-step stages, the

smaller particles disappear, so that the average grain size

increases and is thus closer to the predicted Zener radius.

While the above test with small initial grain size

demonstrates possible complicated grain growth phenom-

ena, the second example with an initial grain size of 3:2lm
seems to be more consistent with the experimental initial

grain size.[17] The growth behavior, shown in Fig. 7(b),

presents a continuous growth curve, with a growth rate

much smaller than that of pinning-free growth and devia-

tion from the parabolic law. The early discontinuous, step

stages have been avoided since the initial average grain

size is larger than the Zener radius of the precipitate nuclei,

and precipitate particles grow faster so that they are unable

to withstand the migrating grain to a smaller size. Com-

paring with the previous case, the loss of the smaller grains

is much less, so that the average grain size is significantly

smaller than the predicted Zener radius. As a result, the

calculated average grain size is much smaller than the

experimental data which have been assumed equal to Zener

radius and hence were used to fit Zener parameters.

Therefore, Zener parameters need to be adjusted to provide

a larger Zener radius to match the experimental data. A

closer examination of the experimental grain size data

appears to imply that the early stage of grain growth fol-

lows the parabolic law, corresponding to an un-pinning

state. Therefore, the current version of Zener model overly

suppresses grain growth when grain size is significantly

smaller than Zener radius. By somewhat arbitrarily dis-

abling pinning effect until the average grain size reached

0:7lm, and setting K ¼ 0:5, m ¼ 0:93 in Eq 4, the

Fig. 7 Calculated average grain size and comparison between un-pinned (dashed line) and pinned (solid line) grain growth (a) Initial average

grain radius of 0.2 lm (b) Initial average grain radius of 3.2 lm

Fig. 6 Calculated average particle radius of cementite (solid line) in

comparison with experimental data[17], together with calculated

volume fraction change (dashed line)
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simulation has been repeated and results are shown in

Fig. 8. An excellent agreement has been obtained.

4 Discussions

A general form of the kinetics of normal grain growth can

be described as[19]

R
n � R0

n ¼ kt ðEq 19Þ

where n is the grain growth exponent. Current simulations

of normal grain growth validate against a theoretical

parabolic growth rate (n ¼ 2) as expected. Regardless of

the initial GSD, either log-normal or Hillert distribution

whose largest size is within 1.6 times the average value, a

steady-state Hillert distribution is preserved, in agreement

with theoretical analysis.[4] Kim et al. argued, based on

theoretical derivation, that the log-normal distribution,

despite widely recognized in experimental data, is not a

steady-state distribution with n ¼ 2.[20] Feltham[21] pro-

posed a growth model for a possible steady-state log-nor-

mal distribution while maintaining n ¼ 2. In terms of the

same parameters as defined in Eq 5 his formulation can be

expressed as

dRi

dt
¼ aMc

Ri
ln

Ri

RCr

ðEq 20Þ

However, our preliminary results (although still too

immature to be shown in this paper) did not have a log-

normal steady-state GSD using this equation. A closer look

at this equation reveals that the dissolution rate of the small

grains is still significantly larger than the growth rate of the

large grains, leaving a tail at the lower end of GSD moving

away from a log-normal shape.

Interaction of the kinetics between the grains and second

phase particles has been revealed as an extremely com-

plicated process, profoundly affected by initial size, grain

size distribution, growth and coarsening rate of both pha-

ses, to name a few. Inhibition from second phase particles

leads to a grain growth significantly deviating from para-

bolic behavior. In extreme cases, discontinuous grain

growth is possible when second phase particles trigger

multiple distinctive stopping events. Though this possibil-

ity has been qualitatively explained by a numerical

experiment, search for further practical evidence is

required. For more quantitative analyses, a simplified setup

has thus to be utilized in which pre-existing second phase

particles are static, refraining from size and volume frac-

tion changes. The non-uniform grain size distribution

always gives a limiting average grain size R smaller than

Zener radius Rz, instead of the equal size assumption from

most theoretical and experimental work. Gladman consid-

ered the heterogeneity of GSD and derived a dependence of

Zener radius on a parameter Z, the ratio of the maximum

growing grains to matrix (mean) grains.[22,23] However,

practically Z is difficult to be identified precisely, com-

paring with the more distinct minimum size Rm as shown in

Fig. 4. Hellman and Hillert[17] also considered non-uni-

form GSD, and derived from Eq 16 that, assuming mini-

mum grain size Rm ¼ 0:75RCr and further R ¼ RCr, the

limiting average size R is one-third of the Zener radius.

Qualitatively their conclusion supports our observations.

However, they noted that their assumptions were arbitrary,

and were not reproduced by the current numerical results to

offer a decisive, quantitative guidance. Nevertheless, their

assumption can be used as a ‘‘lower bound’’, in that the

limiting average grain size is approximately one-third of

Zener radius. The current numerical results indicate that for

a narrower initial grain size distribution, an ‘‘upper bound’’

of Rm ¼ 0:5RCr exists, so that RCr, and approximately the

limiting average size R, is equal to Zener radius, as shown

in Fig. 5, corresponding to a uniform grain size distribution

approximation assumed in most experimental work.

Therefore, K parameter in Zener model, obtained from

most literature, e.g. those collected in the overview by

Monahar et al.[13] should be multiplied by a factor from 1

(narrower GSD) to 3 (broader GSD) when grain size dis-

tribution is taken into account.

Meanwhile, current numerical results cast doubt on the

validity of the Zener model during the nucleation and

growth stage of second phase precipitation, as experimental

data suggested that in this stage it appeared to follow

normal grain growth. Admittedly an ill-described precipi-

tation kinetics could have increased the volume fraction of

the second phase too quickly. In most cases, however, the

volume fraction increase outpaces particle growth
Fig. 8 Calculated average grain size and comparison between un-

pinned (dashed line) and pinned (solid line) grain growth. Modified

Zener parameters have been used
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remarkably. Understandably the original derivation of

Zener model, and almost all the revisions afterwards,

considered a fixed particle size and volume fraction, whose

values were naturally chosen from coarsening stage. While

the arbitrary ‘‘cut-off’’ size implemented in the current

work seems practically effective, an in-depth model

development is certainly required. Gottstein and Shvin-

dlerman[24] studied the grain boundary motion in the

presence of mobile particles. Their theory suggested that

for small second phase particles (high mobility particles),

grain boundary motion is controlled by grain boundary

mobility (hence un-pinning state), whereas for large par-

ticles (low mobility particles) boundary velocity is deter-

mined by particle density (hence volume fraction) and

particle mobility. This is consistent with current observa-

tions. Incorporation of their theory into the current model is

in progress. Further improvements are also being investi-

gated, including effect of particle size distribution of sec-

ond phase,[25] effect of large volume fraction,[16]

precipitates at different locations (bulk, grain boundary,

grain edges, grain corners, etc.),[17] effect of the precipitate

shape,[26–28] etc.

5 Summary

A mean-field model has been developed that enables sim-

ulations of normal grain growth in terms of grain size

distribution. Integration of this model into a precipitation

simulation program, and application of a modified Zener

pinning model, also enable the investigation of the inter-

actions between grain growth and precipitation kinetics.

Normal grain growth simulations have been successfully

validated against theory to follow a parabolic growth

behavior. A steady-state Hillert distribution has been

obtained, regardless of the initial grain size distribution.

Second phase particles and their precipitation kinetics

dramatically affect the grain growth behavior. A success-

fully designed validation process also reveals that the

average grain size is smaller than Zener radius by up to 3

times when an initially non-uniform grain size distribution

is introduced. The practical application of the Zener model

awaits further improvements to solve the discrepancy from

experimental grain size information at the nucleation and

growth stages of precipitation.
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