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Abstract In this paper, we draw attention to the investi-

gation of the novel exact solution [1.Scripta Mat.

210:114430; M.A. Dayananda, in JPED, this issue, (2022);]

that is applicable to a multicomponent (n-component)

interdiffusion couple where the interdiffusion matrix may

change with alloy composition. In the derivation of this

solution the interdiffusion flux Jj of a component j is

related to (n-1) independent composition gradients for an

isothermal, diffusion couple using the well-known conti-

nuity equation. Novel exact expressions are then derived

for all of the interdiffusion coefficients, ~Dn
ij (i, j = 1, 2,

…..n - 1), where the partial derivatives of the product

Jj y� y0ð Þ with respect to composition Ci (y0 is the Matano

plane) are used. In this paper, it is shown that the novel

solution leads to a computational procedure similar to the

Boltzmann-Matano analysis. Note that the derivatives

oðJj y� y0ð ÞÞ=oCi; i; j ¼ 1; . . .; n� 1 (that are required for

the solution) can only be calculated along the diffusion

path and therefore, for n[ 2, a single couple will not be

enough to calculate all of them correctly.

Keywords binary diffusion � interdiffusion �
multicomponent diffusion

1 Introduction

In 1894, Boltzmann[3] calculated the (single) interdiffusion

coefficient analytically for a binary alloy. In 1933,

Matano[4] extended Boltzmann’s concept by introducing a

special plane named the ‘‘Matano plane’’ (plane x0ð Þ across
which equal amounts of atoms diffuse to the left and right

hand sides of the plane). This became known as the

Boltzmann-Matano (BM) method. Then, Sauer and

Freise[5] examined the interdiffusion coefficients for the

binary alloy using the interrelations between the atomic

fluxes in such a way that the position of the Matano plane

was not needed. The resulting method is the modification

of the BM method, and it is widely known as the Sauer-

Freise (SF) method. Then Hall[6] revised the BM method

and claimed that, at the ends of the composition profiles,

the resulting method gives more accurate outcomes than

the BM and SF methods. The method introduced by Hall is

known as the Hall method (HM). Many authors have

worked on all these methods from different points of

view[7–10] in applications to binary interdiffusion problem

(Zhang and Zhao,[11] Kass and Keeffe,[12] Mittemeijer and

Rozendaal,[13] Garcia et al.[14] to name a few). In 2013,

Belova et al.[15] developed simultaneous measurement of

interdiffusion and tracer diffusion coefficients computa-

tionally for binary and multicomponent alloys. Further-

more, in 2015, Ahmed et al.[16,17] studied interdiffusion

coefficients for binary alloys using the explicit finite dif-

ference method. In their study, they used BM, SF, HM and

a newly developed method treated as the extended Hall
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method to obtain the interdiffusion coefficients. There, it

was found that the original HM does not improve the

accuracy of the interdiffusion coefficients at the ends of the

composition profiles.

In 1956–1959, Fujita and Gosting[18–20] analysed diffu-

sion in ternary metallic systems using an exact solution of

two simultaneous diffusion equations (first presented in

Gupta and Cooper[21] and Krishtal et al.[22]) They derived a

direct exact analysis for extracting the four interdiffusion

coefficients from the fitting parameters of the closed form

solution into the experimentally obtained interdiffusion

profiles. This analysis consists of obtaining the elements of

the inverse interdiffusion matrix and then taking the

inverse of this matrix. The resulting equations consist of a

set of the second order polynomial equations. The problem

with this approach is that it is difficult to extend it to

quaternary alloys and almost impossible for the quinary

and higher alloys. Very recently, this problem was suc-

cessfully overcome in.[23–25]

In 1965, Dayanada and Grace[26] worked on ternary

diffusion in CuZnMn alloys, whereas Ziebold[27] worked

on CuAgAu metallic alloys. In 1985, Malik and Bergner[28]

investigated interdiffusion experiment in the ternary sys-

tem and calculated the constant interdiffusion matrix using

various methods. Further, a theoretical overview of ternary

diffusion was developed by Vrentas and Vrentas.[29] A new

method was developed by Dayananda and Sohn[30] for

obtaining constant interdiffusion coefficients in a three-

component system. There the authors used experimentally

obtained composition profiles to determine the interdiffu-

sion coefficients using a single diffusion couple for

CuNiZn and Fe-NiAl alloys and two couples for the

NiCrAl alloy. For comparison, in,[31] composition-inde-

pendent interdiffusion coefficients were determined from

composition profiles using several other techniques. In,[32]

Day et al. analysed various ternary metallic systems using a

single diffusion couple making use of MultiDiFlux soft-

ware that was developed for calculating ternary interdif-

fusion coefficients. In general, MultiDiFlux software is

used for the analysis of a single ternary diffusion couple

and, possibly, for two couples. Recently, Dayananda[33]

investigated interdiffusion coefficients using a single cou-

ple in ternary diffusion from diffusion constraints at the

Matano plane. In 2002, Bouchet and Mevrel[34] developed

a numerical inverse method for obtaining the composition-

dependent ternary interdiffusion coefficients from a single

diffusion couple.

In 1966–1969, Kim[35,36] investigated interdiffusion in

the four-component system by extending the work of Fujita

and Gosting.[18,37] They derived a solution to the differ-

ential equations using a similar, direct method as used in[18]

and obtained the general solution. Utilising an expression

from,[35] Kim[36] investigated the combined use of several

experimental techniques for obtaining constant interdiffu-

sion matrix in the quaternary system. Kim[38] investigated

gravitational stability of diffusion in the four-component

liquid system using those mathematical expressions.

In[39–44] a square root diffusivity method (SQRD) was

developed and applied to various binary, ternary and qua-

ternary alloys to obtain constant interdiffusion matrices. In

2006–2007, Kulkarni et al.,[45,46] investigated a general

method for quaternary alloys for the case of CuNiZnMn

couples. They used the transfer matrix method (TMM) for

obtaining the constant interdiffusion coefficients within the

available composition range. The calculated interdiffusion

matrix was then used for the generation of composition

profiles by TMM followed by comparison with the original

profiles. In 2020, Verma et al.[47] investigated the quater-

nary FeNiCoCr alloy experimentally using a body-diagonal

(BD) diffusion couple.[48] In a BD couple all independent

concentration differences (at the terminal points) are equal,

except for being positive or negative. The advantage of the

BDs is that they can be represented with a simple vector

notation.

High entropy alloys (HEAs) are a class of multicom-

ponent alloys fabricated with equal or near equal quantities

of five or more principal elements. HEAs are usually

defined as having four core effects: high entropy, sluggish

diffusion, severe lattice distortion and cocktail

effects.[49,50] Among these four core effects, sluggish dif-

fusion makes HEAs very competitive for high-temperature

strength, impressive high-temperature structural stability,

and the formation of beneficial nanostructures. Tsai

et al.[51] investigated self-diffusion phenomena of HEAs

for the first time for the CoCrFeMnNi alloy. A quasi-binary

approach was used to investigate the composition profiles.

Zhang et al.[52] studied sluggish diffusion in AlCoCrFeNi

and CoCrFeMnNi alloys using the CALPHAD approach.

Later, Beke and Erdelyi[53] investigated the composition

dependent interdiffusion coefficients of CoCrFeMnNi

alloys using semi-empirical rules. In[54] diffusion in the fcc

AlCoCrFeNi high entropy alloy was analysed experimen-

tally as well as numerically for several diffusion couples.

In that study, tracer diffusion coefficients were determined

using the obtained composition profiles from the interdif-

fusion experiments and fitting method, and results were

compared with the data of.[51] Recently, Paul et al.[55]

studied the diffusion kinetics behaviour of CoCrFeMnNi

HEAs. In that study, various random alloy models were

used. Results for all three models showed good agreement

with the experimental study. Afikuzzaman et al.[56] studied

CoCrFeMnNi HEAs numerically using constant as well as

a composition-dependent interdiffusion matrix for several

diffusion couples mainly quasi-binary and quasi-ternary.

The composition-dependent interdiffusion matrix was cal-

culated using the Darken and Manning theoretical
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formalisms. The obtained composition profiles showed

good agreement with the composition profiles obtained

experimentally in the previous studies.[51,54]

In[1,2] the novel exact solution that is applicable to a

multicomponent (n-component) interdiffusion couple was

derived. It was assumed that the interdiffusion matrix may

change with composition. In the derivation of this solution,

using the continuity equation, the interdiffusion flux Jj of a

component j is related to (n-1) independent composition

gradients. In the present paper, this solution is tested

numerically for the use in binary diffusion where the dif-

fusion coefficient can be a linear or quadratic function of

composition. It is tested for the application to the ternary

diffusion couple(s) as well. The detailed algorithm for this

application is provided. It is shown that the novel solution

leads to a computational procedure similar to the Boltz-

mann-Matano analysis.

1.1 Theory

In[1,2] a novel solution to the multicomponent interdiffu-

sion problem was derived. The final relations for the

components of the matrix of the interdiffusion coefficients

~Dn
ij

� �
are given as follows. For the diagonal terms, we

have:

~Dn
ii ¼

x� x0ð Þ2

2t
� of ~Ji x� x0ð Þg

oCi
; i ¼ 1; . . .; n� 1:

ðEq 1Þ

and for the off-diagonal terms we have:

~Dn
ij ¼ � of ~Ji x� x0ð Þg

oCj
; i 6¼ j; i; j ¼ 1; . . .; n� 1 ðEq 2Þ

where x is the diffusion direction, x0 is the position of

Matano plane and ~Ji are the interdiffusion fluxes of com-

ponent i:

~Ji xð Þ ¼ 1

2t
r

Ci xð Þ

C�
i

x� x0ð ÞdCi: ðEq 3Þ

2 Tests for Binary Systems

The solution, Eq 1, 2, 3, can be applied to a binary diffu-

sion couple with a constant interdiffusion coefficient, as

was demonstrated in.[1] Here we consider interdiffusion

coefficient as a linear and quadratic functions of compo-

sition. All the profiles below were calculated using the

finite difference numerical procedure described in detail

in.[16,17]

For the interdiffusion flux ~J xð Þ at any x-position in the

diffusion zone we have the following expression:

~J xð Þ ¼ 1

2t
r

C xð Þ

C�
x� x0ð ÞdC: ðEq 4Þ

and for the given problem this flux can be calculated

(similar to[1]) and then application of Eq. 1, 2, 3 gives a

resulting value for the interdiffusion coefficient ~D as a

function of composition, C1. The resulting interdiffusion

coefficients (as function of composition) are presented in

Fig. 2(a).

Similarly, for the quadratic ~D ¼ D0 1� 2C1 1� C1ð Þð Þ
where D0 is a scaling constant, with the boundary condition

C�
1 = 1.0 and Cþ

1 = 0.0 we have the interdiffusion profile

that is shown in Fig. 1(b).

Application of Eq. 1, 2, 3 gives resulting value for the

interdiffusion coefficient ~D as function of composition, see

Fig. 2(b).

Obviously, in both these cases the agreement between

the input and output values of the interdiffusion coefficient

is excellent.

3 Test for Ternary Systems

In the ternary system (C1;C2;C3 where C3 is chosen as the

reference component) the direct application of expressions

Eq. 1, 2, 3 to a single couple is not possible. This is clear if

we look at the available functional dependences of the two

compositions, C1;C2. Their profiles are available only

along the diffusion path which can be represented by a

line,v, in the composition space. Therefore, alongv, C1

must be related to C2 in such a way thatCv
1 ¼ Cv

1 C2ð Þ.
Therefore, if we take a derivative of ~J1 xð Þ x� x0ð Þ with

respect to C1 alongv, we will have that:

o ~J1 xð Þ x� x0ð Þ
� �

oC1 jv
¼

o ~J1 xð Þ x� x0ð Þ
� �

oC1

þ
o ~J1 xð Þ x� x0ð Þ
� �

oC2

oCv
2

oC1

ðEq 5Þ

where the derivative on the left-hand side is taken straight

from the corresponding profiles, and the derivatives on the

right-hand side are the ‘‘true’’ derivatives that are to be

used in the Eq. (1, 2). Similarly, for the other three

derivatives we have the following expressions:

o ~J1 xð Þ x� x0ð Þ
� �

oC2 jv
¼

o ~J1 xð Þ x� x0ð Þ
� �

oC2

þ
o ~J1 xð Þ x� x0ð Þ
� �

oC1

oCv
1

oC2

ðEq 6Þ
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o ~J2 xð Þ x� x0ð Þ
� �

oC2 jv
¼

o ~J2 xð Þ x� x0ð Þ
� �

oC2

þ
o ~J2 xð Þ x� x0ð Þ
� �

oC1

oCv
1

oC2

ðEq 7Þ

o ~J2 xð Þ x� x0ð Þ
� �

oC1 jv
¼

o ~J2 xð Þ x� x0ð Þ
� �

oC1

þ
o ~J2 xð Þ x� x0ð Þ
� �

oC2

oCv
2

oC1

: ðEq 8Þ

Two sets of Eq. (5) and (6); and Eq. (6) and (7) cannot

be solved to retrieve four derivatives
o ~Ji xð Þ x�x0ð Þ½ �

oCj
; i; j ¼ 1; 2.

This is because the matrix of the coefficients for each set is:

1
oC2

oC1
oC1

oC2

1

2
664

3
775: ðEq 9Þ

and it is clearly a singular matrix with a determinant of

zero if it is applied to a single diffusion couple.

To be able to resolve the situation, another couple is

obviously needed. As usual, the new couple should have a

diffusion path that intersects with the diffusion path of the

first couple. Then, at the point of intersection, the Eq. (5)

and (7) can be taken from the first couple, and Eq. (6) and

(8) can be taken from the second couple. The interdiffusion

Fig. 1 Interdiffusion profiles in binary alloys (see text for details).

With (a) linear interdiffusion coefficient; and (b) quadratic interdif-

fusion coefficient (dashed lines are for the constant interdiffusion

coefficient for comparison)

Fig. 2 Interdiffusion coefficients obtained from the profiles in Fig. 1

using Eqs. 1, 2, 3, presented as function of composition. For (a) linear

composition dependence; and (b) quadratic composition dependence.

Dashed lines are for the actual interdiffusion coefficients, in (b) this

line almost perfectly coincides with the result of the analysis
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coefficient is then available at one composition—at the

intersection point. This is similar to the application of the

Boltzmann-Matano analysis to ternary interdiffusion

couples.

Here we consider two ternary interdiffusion couples

where the interdiffusion matrix for both of them is chosen

as:

~D
� �

¼ D0
1:0 0:5
0:1 0:5

� �
ðEq 10Þ

where again D0 is the scaling constant.

The middle composition for both couples

isC1 ¼ C2 ¼ C3 ¼ 1
3
. This composition will be accepted

(approximated) as the composition of interception where

the interdiffusion matrix can be calculated.

In the couple 1, the end compositions are:

C�
1 ¼ 1

6
;C�

2 ¼ 5
12
;C�

3 ¼ 5
12
andCþ

1 ¼ 1
2
;Cþ

2 ¼ 1
4
;Cþ

3 ¼ 1
4
.

In the couple 2, the end compositions are:

C�
1 ¼ 5

12
;C�

2 ¼ 1
6
;C�

3 ¼ 5
12
andCþ

1 ¼ 1
4
;Cþ

2 ¼ 1
2
;Cþ

3 ¼ 1
4
.

The interdiffusion profiles were calculated for the time

t ¼ 20 using closed form solution and discretised for the

step in the diffusion direction equivalent to about 2 lm.

The profiles for the first and second couples are presented

in Fig. 3(a), (b).

Application of the approach described above gives the

following interdiffusion matrix:

~D
� �

¼ D0
0:99 0:49
0:098 0:50

� �
ðEq 11Þ

Comparing with Eq. (10), this is very accurate result,

only maximum of 1% relative error for the diagonal terms

and 2% for the off-diagonal terms. As can be seen from this

example, in the ternary system, the new method works very

well for two couples. However unfortunately, the extended

(more than at one point) compositional dependence of the
~D

� �
is not accessible with the new method, even when

using two couples.

4 Quaternary and Higher Component Systems

Dealing with quaternary and higher components systems is

similar to the dealing with the ternary system. It is easy to

prove that for the n-component n[ 1ð Þ systems, the

n� 1ð Þ couples will be needed for the current analysis to

be applicable. Results will be obtained only for one point

where the diffusion paths of all the couples intersect. This

is consistent with the general theories of interdiffusion in

multicomponent systems.

However, it should be added that in the case of qua-

ternary and higher component systems, the building of

three and higher number of couples that will have a point of

common intersection is very difficult.

5 Conclusions

In this paper, we have investigated the novel exact solu-

tion[1,2] that is applicable to a multicomponent (n-compo-

nent) interdiffusion couple where the interdiffusion matrix

may change with alloy composition. Various computa-

tional approaches have been used. Here, it was shown that

the novel solution leads to a computational procedure

similar to the Boltzmann-Matano analysis. For multicom-

ponent diffusion couple, the derivatives

oðJj y� y0ð ÞÞ=oCi; i; j ¼ 1; . . .; n� 1 (that are required for

the solution) can only be calculated along the diffusion

path and, therefore, a single couple will not be enough to

calculate all of them correctly. As expected in the multi-

component interdiffusion analysis, n� 1 diffusion couples

Fig. 3 Interdiffusion profiles in two ternary alloy couples (see text for

details). (a) – couple 1; and (b) – couple 2
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is essential for the correct application of the method. The

full interdiffusion matrix can be then obtained, but only at

one composition where all diffusion paths intersect.
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