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John Ågren1,2

Submitted: 4 January 2022 / in revised form: 15 February 2022 / Accepted: 2 March 2022 / Published online: 13 April 2022

� The Author(s) 2022

Abstract The Onsager relations are discussed and it is

suggested that they should be interpreted as there is a frame

of reference where all the transport processes are inde-

pendent. The concepts are illustrated with isobarothermal

diffusion in simple metallic phases as well as complex

ionic systems. A transformation from lattice-fixed frame of

reference to number-fixed frame gives the Kirkendall effect

as a cross effect.

Keywords Irreversible transport processes �
Thermodynamics � Entropy production � Frame of
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1 Introduction

In a legendary article from 1931 Onsager1 discussed cases

where two or more irreversible transport processes occur

simultaneously, e.g. heat and electric conduction. When

occurring alone each process is described by a linear

relation between the flux J and the gradient in a thermo-

dynamic potential, e.g. Fourier’s law and the Ohm’s law.

They can both be written in the form

J ¼ �LX ðEq 1Þ

The flux is the transported amount expressed per unit area

and unit time in the direction of the driving force X which

is the gradient of the appropriate thermodynamic potential.

L is a phenomenological coefficient that represents a con-

ductivity in the medium under consideration. When several

processes occur simultaneously it is observed experimen-

tally that one process may also depend on the driving force

for another process, i.e. there are cross effects. For n

simultaneous processes one would write

Ji ¼ �
Xn

j

LijXj ðEq 2Þ

Figure 1 summarizes the processes of heat, electric and

diffusive transport and their cross effects.

Inspired by Thomson (Kelvin) Onsager then showed that

under some conditions

Lij ¼ Lji ðEq 3Þ

This is referred to as the Onsager reciprocity relations and

was a major reason for awarding him with the Nobel prize

in chemistry 1968. His mathematical proof is somewhat

complex and is based on a number of assumptions and

particularly the principle of microscopic reversibility.

Onsager introduced the latter concept to represent that at

equilibrium a process goes in the forward direction as often

as in the backward direction. It is thus usually claimed that

the relations hold close to equilibrium. However, the

physical nature of this principle and how it relates to the

underlying molecular laws is less clear. Over the years the
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reciprocity relations have been discussed and criticized

frequently. The criticism by Truesdell2 is particularly

concise and clear. It is also remarkable that Onsager did not

consider transport processes at all in his proof but rather a

generalized chemical reaction. The purpose of the present

article is to demonstrate that the proof can be performed for

transport processes and in a much simpler way with a

straight forward physical meaning. We shall demonstrate

that the relations hold even when the system is far from

equilibrium as long as fluxes and forces are represented by

the linear relation Eq 2.

In the following we shall use vector–matrix notation and

write the flux as a columnar vector J with each element

representing the flux of a certain quantity and X as a

columnar vector with the conjugated driving forces as

elements. L is thus a square matrix with elements Lij and

the same number of rows and columns as n, the number of

transport processes considered. Equation 2 thus is written

in the same form as Eq 1

J ¼ �LX ðEq 4Þ

and Eq 3 then is

L ¼ LT ðEq 5Þ

where LT is the transpose of L, i.e. the matrix obtained by

exchanging rows and columns. Equation 5 thus means that

L is a symmetric matrix. The L matrix is referred to as the

phenomenological matrix.

2 Entropy Production and Driving Forces

From a thermodynamic point of view the negative gradient

of a potential /i yields a force to give a flux Ji of its

corresponding conjugated extensive quantity. Using r to

denote the gradient operator the driving force thus is

�r/i. The flux and the driving force are conjugated

thermodynamic quantities. Examples of transported quan-

tities and conjugated thermodynamic potentials are given

in Table 1.

where T is the temperature, li the chemical potential of

i, w the electric potential and P the pressure.

2.1 The Local Entropy Production

All irreversible processes produce entropy. Each process

contributes to the total entropy production r in the volume

element under consideration by the amount �Jir/i [ 0.

This relation is fundamental and stems from the combined

first and second law of thermodynamics and an entropy

balance, i.e. it does not depend on any model. As can be

seen r is expressed per volume and time. In vector–matrix

notation we thus have the local entropy production.

r ¼ �JTrU ðEq 6Þ

where JT is the transpose of J and the columnar vector rU
has the elements r/i.

The local entropy production is a measure of the irre-

versibility and is independent of the choice of frame of

reference for the fluxes. If fluxes and forces are expressed

in an arbitrary frame of reference we would thus write

r ¼ �JTX ðEq 7Þ

Consequently if r is known in one frame of reference and

the fluxes are transformed by a matrix A

J0 ¼ AJ ðEq 8Þ

it is necessary to transform also the driving forces to keep r
the same in order to make Eq 7 generally valid.

2.2 Transformation of Fluxes and Forces

Transform the fluxes with the matrix A according to Eq 8.

As shown by several authors, e.g. Truesdell2 and Lorimer,3

the driving forces then must be transformed with a matrix

B, i.e. rU0 ¼ BrU, in such a way that the entropy pro-

duction is invariant

Fig. 1 Classical cross effects

Table 1 Examples of thermo-

dynamic potentials
Transported quantity Potential

Heat �1=T

Atoms or species i li=T

Electric charge w

Volume �P
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JTrU ¼ ðJ0ÞTrU0 ¼ ðAJÞTBrU ¼ JTATBrU ðEq 9Þ

thus ATB ¼ I, where I is the unity matrix and it follows that

B ¼ ðATÞ�1
and

rU0 ¼ ðATÞ�1rU ðEq 10Þ

or

rU ¼ ðATÞrU0 ðEq 11Þ

The L matrix must be transformed accordingly

AJ ¼ J0 ¼ ALrU ¼ ALATrU0 ðEq 12Þ

Thus

L0 ¼ ALAT ðEq 13Þ

It should be noted that if the L matrix is symmetric Eq 13

will guarantee that also L0 must be symmetric.

2.3 The Onsager Reciprocity Relations

In accordance with the reciprocity relations1 the matrix L is

always symmetric, i.e. L ¼ LT, provided that certain mea-

sures are taken. The most important ones are that the fluxes

are independent and that fluxes and forces are chosen so

that Eq 7 holds because the entropy production does not

depend on frame of reference. As mentioned Onsager’s

proof is not so easy to follow but from Eq 13 one may

conclude that if there is a frame of reference where the

processes are independent, i.e. the L matrix is diagonal and

symmetric in a trivial sense, it is evident from Eq 13 that

also L0 will be symmetric although the off-diagonal ele-

ments are non-zero. It should be emphasized that it is well

known that all real symmetric matrices can be diagonlized

by the appropriate transformation.4

It is now suggested that the physical meaning of the

reciprocity relations is that there is a frame of reference in

which the true character of the processes as being inde-

pendent is revealed by the L matrix being diagonal. The

reason why we often do not see this is because we are

looking at the processes in an inappropriate frame of ref-

erence and the only thing we see is that although the matrix

has non-zero off-diagonal elements it is symmetric. An

alternative proof of the reciprocity relations was presented

by Verros and Testempasi in 2006.5 The proof is rather

lengthy but seems to be based on the same ideas as dis-

cussed here.

3 Application to Isobarothermal Diffusion -
Frame of Reference

We shall now demonstrate the preceding discussion with

the case of isobarothermal diffusion. The reason for

choosing this case is that it is practically important and

there exist a large amount of experimental data. We con-

sider a system with C components, i.e. its composition may

be varied by adding the components in C different ways. Of

course the fractions of the different components can only

be varied in C � 1 different ways because they have to sum

up to unity. In the following we will express the compo-

sition in terms of mole fractions xi calculated from the

molar content Ni of the different components i.

xj ¼
NjPC
i¼1 Ni

ðEq 14Þ

It this follows directly that
PC

j¼1 xj ¼ 1.

3.1 Lattice-Fixed Frame

In a crystalline material it may seem natural to represent

diffusion with the crystalline lattice as reference. One may

then imagine ‘‘inert’’ markers that are fixed to the lattice as

reference points. We call this frame of reference the lattice-

fixed frame of reference. The C fluxes are independent in

the lattice-fixed frame of reference. This means that there is

no way to calculate one of the fluxes if one knows the

C � 1 other fluxes. However, often it is more convenient to

consider diffusion in other frames, e.g. during mixing and

interdiffusion where the interest is the exchange of atoms.

In a binary system one may be interested in how the two

components mix with each other. A transfer of one com-

ponent is then always balanced by an opposite transfer of

the other component. This mean that the two fluxes are no

longer independent when this frame of reference is used.

3.2 Frames of Reference with Dependent Fluxes

In practical assessment of diffusion data other frames of

reference are used. These type of frames are defined by

introducing a dependence between the fluxes, i.e.

Table 2 Examples of frames of

reference
Frame of reference ai

Number fixed 1

Volume fixed Vi

Mass fixed mi

Solvent A fixed dAi
Substitutional fixed dis
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XC

i¼1

Jiai ¼ 0 ðEq 15Þ

where the amount of diffusing species is expressed in mol.

Examples of such frames are given in Table 2, where mi is

the molar mass, dik, the Kronecker delta that is 1 when

i ¼ k and 0 otherwise and s stands for a substitutional

element. The number-fixed frame is identical to the vol-

ume-fixed frame when all elements have the same partial

molar volume Vi. The substitutional-fixed frame is identi-

cal to the volume fixed frame when all substitutional ele-

ments have the same volume VS, and the interstitial

elements do not contribute to the molar volume. The molar

volume is denoted Vm.

In all the frames of reference where a dependency is

introduced between the C fluxes one flux is superfluous

because it can be calculated from the other fluxes. In order

to keep the number of independent ‘‘fluxes’’ the same we

may replace one arbitrarily chosen flux with another

quantity which is of interest. We shall return to this aspect

in the next section.

3.3 Transformation Between Frames of Reference

Transformation from one frame of reference to any other

frame of reference is achieved by multiplying the fluxes

with a transformation matrix. Suppose that the fluxes J are

known in one frame of reference and one would like to

transform to another frame denoted by a ‘‘prime’’ as J0. The
fluxes are then transformed by multiplication with a

transformation matrix A.

J0 ¼ AJ ðEq 16Þ

For example, if the fluxes J are known in the lattice-fixed

frame of reference transformation with the matrix A gives

the fluxes in any other frame defined by Eq 16.

A ¼

1� x1a1=am � x1a2=am ::: � x1aC=am

�x2a1=am 1� x2a2=am ::: � x2aC=am

..

. ..
. . .

. ..
.

�xCa1=am � xCa2=am ::: 1� xCaC=am

2

66664

3

77775

ðEq 17Þ

where am ¼
XC

k¼1
akxk.

The transformation matrix thus has the elements

aik ¼ dik � xiak=am. As mentioned in the previous section

one flux is now superfluous which means that information

is lost in the transformation and the A matrix defined by

Eq 17 is singular and cannot be inverted. Consequently it is

not possible to perform the reverse transformation.

The sum of fluxes expressed in the lattice-fixed frame

gives the net flow of atoms and is related to the migration

velocity vK of Kirkendall markers expressed in the number-

fixed frame6.

vK=Vm ¼ �
XC

i¼1

Ji ðEq 18Þ

By the same token
PC

i¼1 JiVi represents the net-flow of

volume relative the lattice. We will thus replace an arbi-

trarily chosen row in A with aik ¼ bi and the final A matrix

is, if we chose to replace the C:th row

A ¼

1� x1a1=am � x1a2=am ::: � x1aC=am

�x2a1=am 1� x2a2=am ::: � x2aC=am

..

. ..
. . .

. ..
.

b1 b2 ::: bC

2
66664

3
77775

ðEq 19Þ

Transforming to the number-fixed frame and taking all

bi ¼ �1 the C:th flux thus is J0C ¼ �
PC

i¼1 Ji ¼ vK=Vm, i.e.

the Kirkendall velocity expressed in the number-fixed

frame. Consequently no information has been lost by using

the A matrix defined in this way and the reverse transfor-

mation may be performed, e.g. it is possible to transform

from number-fixed to lattice-fixed frame of reference. This

of some practical importance because experimental eval-

uation of diffusion coefficients are often based on mea-

sured concentration profiles, e.g. using the so-called

Boltzmann-Matano method and if one has also measured

marker movement in the number-fixed frame one may

calculate the diffusivities in the lattice-fixed frame.

3.4 Transforming from Lattice-Fixed Frame

of Reference to Some Other Frames

In this section the transformation from lattice-fixed to other

frames of reference is discussed. In Sect. 3.5 transforma-

tion between arbitrary frames of reference will be

discussed.

3.4.1 Volume-Fixed Frame of Reference

The volume-fixed frame is defined by ai ¼ Vi for all spe-

cies i, see Eq 15 and Table 2. Consequently am ¼ Vm and

the transformation matrix is

A ¼

1� x1V1=Vm � x1V2=Vm ::: � x1VC=Vm

�x2V1=Vm 1� x2V2=Vm ::: � x2VC=Vm

..

. ..
. . .

. ..
.

�V1 � V2 ::: � VC

2

66664

3

77775

ðEq 20Þ
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The last row gives vK ¼ �
PC

i¼1 JiVi, i.e. the Kirkendall

velocity in the volume-fixed frame of reference.

3.4.2 Number-Fixed Frame of Reference

The number-fixed frame is defined by ai ¼ 1 for all species

i, see Eq 16 and Table 2. Consequently am ¼ 1 and the

transformation matrix is

A ¼

1� x1 � x1 ::: � x1

�x2 1� x2 ::: � x2

..

. ..
. . .

. ..
.

�1 � 1 ::: � 1

2
66664

3
77775

ðEq 21Þ

3.5 Transforming Between Arbitrary Frames

of Reference

If we denote J0 as the flux in the lattice-fixed frame of

reference we may transform to any other frame J1 by

J1 ¼ A0!1J0, where J1 denotes the fluxes in the new frame

of reference. Or we may transform to J2 by J2 ¼ A0!2J0.

In fact we can transform from 1 to 2 by J2 ¼ A1!2J1 and

we find that A1!2 ¼ A0!2ðA0!1Þ�1
where ðA0!1Þ�1

denotes the inverse of A0!1.

4 The Concept of Mobility

As mentioned a negative gradient of a thermodynamic

potential �r/i is a force to move something. The mobility

Mi of a ‘‘particle’’ i is introduced from the assumption that

its velocity vi is proportional to the force �r/i acting on

it, i.e

vi ¼ �Mir/i ðEq 22Þ

Suppose we have generalized ‘‘particles’’, i.e. atoms,

molecules, electrons, energy quanta etc. Except for a very

short acceleration time the behaviour represented by Eq 22

is expected when a particle moves in a media with friction.

The flux of i particles is obtained by multiplication with

their concentration ci.

Ji ¼ civi ¼ �ciMir/i ðEq 23Þ

Introducing the C � C matrix L with the diagonal elements

ciMi and all other elements zero we have in vector–matrix

notation

J ¼ �LrU ðEq 24Þ

4.1 Mobility in Isobarothermal Processes Without

Electric Gradients

If all temperature, pressure and electric gradients can be

neglected the local entropy production expressed in the

lattice-fixed frame of reference is

r ¼ � 1

T
JTrl ðEq 25Þ

where J is the columnar vector containing the C diffusive

fluxes in the lattice-fixed frame of reference. rl is the

columnar vector containing the C chemical potential gra-

dients rli. It should be emphasized that temperature may

still vary in time but slow enough to level out any tem-

perature differences in the considered volume. This is often

a very good approximation on the micro-structural level.

This may be understood from the fact that the thermal

diffusivity in solid metals is in the order of 10�5 m2s�1 and

from Einstein’s formula the time needed to achieve a

homogeneous temperature over a distance of 1 mm is

around 10�1 s. One can then consider the local Gibbs

energy dissipation, i.e. �Tr, and use �rli as the driving

force, i.e. Eq 23 is usually written.

Ji ¼ �ciMirli ðEq 26Þ

Introducing the C � C matrix L with the diagonal elements

ciMi and all other elements zero we have in vector–matrix

notation

J ¼ �Lrl ðEq 27Þ

5 Isobarothermal Diffusion in a Binary System

Consider a hypothetical binary system with components A

and B. From Eq 26 and the fact that ci ¼ xi=Vm one obtains

in the lattice-fixed frame of reference

JA ¼ � xA
Vm

MArlA ðEq 28Þ

JB ¼ � xB
Vm

MBrlB ðEq 29Þ

The L matrix in the lattice-fixed frame of reference thus is

L ¼ 1

Vm

xAMA 0

0 xBMB

� �
ðEq 30Þ

In general JA þ JB 6¼ 0, i.e. the fluxes are independent in

this frame of reference and the L matrix is diagonal.

Transformation to the number-fixed frame of reference is

performed with the matrix A given by Eq 21. Taking J0A as

dependent flux, i.e. J0A ¼ �J0B one obtains
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A ¼
�xB ð1� xBÞ
�1 � 1

� �
ðEq 31Þ

It should be observed that with this A matrix the second

flux is not the dependent J0A ¼ �J0B but it is rather taken as

JA þ JB. From Eq 11 one then obtains the new set of forces

X1 ¼ rðlB � lAÞ ðEq 32Þ

X2 ¼ �
�
xArlA þ xBrlB

�
ðEq 33Þ

Equation 13 yields the new L matrix

L0 ¼ 1

Vm

xAxBðxBMA þ xAMBÞ xAxBðMA �MBÞ
xAxBðMA �MBÞ xAMA þ xBMB

� �

ðEq 34Þ

As can be seen the L0 matrix has off-diagonal elements but

is symmetric and the reciprocity relations are clearly

obeyed. In the new frame of reference X2 vanishes due to

the Gibbs–Duhem relation. The fluxes in the new frame of

reference thus are

J01 ¼ � 1

Vm

�
xAxBðxBMA þ xAMBÞ

�
rðlB � lAÞ ¼ J0B ¼ �J0A

ðEq 35Þ

J02 ¼
1

Vm
xAxBðMA �MBÞrðlB � lAÞ ¼

vK
Vm

ðEq 36Þ

The two fluxes J01 and J02 are independent and the L0 matrix

has off-diagonal elements. The Kirkendall effect, repre-

sented by the Kirkendall velocity vK is now a cross effect.

In a similar way other phenomena, e.g. electro migration,

the motion of atoms in a strong electric field, may be

regarded as cross effects.

6 Isobarothermal Diffusion in Ionic Systems

Ionic systems present some additional complications

because diffusion occurs by migration of charged con-

stituent species rather than electro-neutral components

which have been considered so far. For simplicity, we now

only consider elemental ions i, each with a charge Zi, and

the electron e�1 with charge Ze�1 ¼ �1. The electron is

considered as a species and as a component that only

contains the electron species.

It is common to assume that the diffusional flux J0i of the

ionic species i is described by an individual mobility and

the gradient of the chemical potential of the ion i i.e. rKi.

Written as columnar vectors we use J0 and rK. The L

matrix thus is a square matrix and in the lattice-fixed frame

of reference it is diagonal and is denoted L0, i.e.

J0 ¼ �L0rK ðEq 37Þ

Equation 37 is sometimes referred to as Kohlrausch’s law.

The basic parameters are the diagonal elements L0i of the L
0

matrix which also includes the electron transport, L0e�1 .

They are all proportional to the respective ionic mobilities.

As the ions are charged there is an extra driving force due

to the electric field w. We arrange the Zi values in a

columnar vector Z and Eq 37 is modified into

J0 ¼ �L0
�
rKþ ZFrw

�
ðEq 38Þ

where F is the Faraday constant. In order to transform to

component diffusion the matrix B with elements Bki is

introduced. It tells how many moles of component k the

ionic species i contains. The ionic species fluxes are thus

transformed to component fluxes by

J ¼ BJ 0 ðEq 39Þ

As an example consider diffusion in the hypothetical

metal-deficit oxide M1�xO1 with diffusing species Mþ2,

Mþ3, O�2 , e�1 and the components M, O and e�1. Clearly

x� 0 with 0 representing the stoichiometric oxide. The B

matrix is

B ¼
1 1 0 0

0 0 1 0

�2 � 3 2 1

2

64

3

75 ðEq 40Þ

The chemical potential gradients of the ionic species are

related to the gradients of the component chemical poten-

tials rl by

rK ¼ BTrl ðEq 41Þ

where BT is the transpose of the B matrix.

Using Eq 41 we find that Eq 38 may be written

J0 ¼ �L0
�
BTrlþ ZFrw

�
ðEq 42Þ

Wagner7 suggested in 1933 that in the absence of external

electric field w would arrange itself in such a way that there

would be no charge transfer due to diffusion, i.e. in vector–

matrix notation

ZTJ0 ¼ 0 ðEq 43Þ

Thus the fluxes are not independent and one of them may

be eliminated. We will thus eliminate the electron flux.

Inserting Eq 42 in Eq 43 yields

Frw ¼ � ZTL0BT

ZTL0Z
rl ðEq 44Þ

Inserting Eq 44 in Eq 42 we obtain
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J0 ¼ �L00rl ðEq 45Þ

where L00 is

L00 ¼ L0BT � L0ZZTL0BT

ZTL0Z
ðEq 46Þ

Although L0 is diagonal L00 is generally a filled matrix. It

should also be observed that L00 is not a square matrix but

has the same number of rows as the number of species

including the electrons and the same number of columns as

the number of components including the electrons.

The next step is to transform from species flux to

component flux by Eq 39. The result is

J ¼ �Lrl ðEq 47Þ

where L is

L ¼ BL0BT � BL0ZZTL0BT

ZTL0Z
ðEq 48Þ

L is a square matrix with the number of rows and columns

equal to the number of components including the electron.

It is found that it is symmetric, i.e. Onsager relations are

obeyed. It is further found that the row and the column that

involve the electron vanish, i.e.

Lke�1 ¼ Le�1k ¼ 0 ðEq 49Þ

We may thus remove the electron as a component, i.e. rl
does not contain rle�1 . In practice we can thus use the

convenient Eq 48 and simply skip the row and the column

corresponding to the electron because they only contain

zeros and we obtain our final L. However, it must be

emphasized that the electronic mobility represented by L0e�1

will enter in the remaining elements in the matrix because

it is included in the scalar quantity ZTL0Z which is actually

the sum
P

i Z
2
i L

0
i including the electron.

In this section we have thus shown that adopting

Kohlrausch’s law we can bring the flux equation for ionic

systems to the same form as Eq 27 with a symmetric

L matrix. As we have previously shown that all legitimate

transformations to other frames of reference will keep the

matrix symmetric the Onsager relations are valid and stem

from the diagonal matrix in Kohlrausch’s law.

7 Discussion

It is suggested that the Onsager reciprocity relations are a

consequence of the fact that there is a frame of reference

where all the considered transport processes are indepen-

dent and the phenomenological matrix is then diagonal.

Transformations of fluxes and forces to other frames under

the constraint of an invariant entropy production then

yields symmetric phenomenological matrices. Of course it

remains to be proven that there actually exists a frame of

reference where the processes are independent. Using his

principle of microscopic reversibility Onsager1 showed that

this would always be the case close to equilibrium in a

system with chemical reactions. It is easy to show that

isobarothermal transport processes based on random jumps

will be independent in the lattice-fixed frame and give

diagonal L matrices. Accounting for correlation effects will

introduce off-diagonal contributions but Manning8 showed

that in simple systems the L matrix will remain symmetric.
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