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First-principles calculations are performed to derive a L10-disorder phase diagram, spinodal
ordering temperature and short-range-order diffuse-intensity spectrum for the Fe-Pt system.
L10-disorder transition is confirmed to be of the first order by both the temperature dependence
of the long-range-order parameter and the large separation between the transition temperature
and spinodal ordering temperature. Short-range-order diffuse-intensity maximum appears at
Æ100æ which is intensified as the spinodal-ordering temperature is approached. The consistency
among all these results supports the reliability of the description of the cluster variation free
energy used for this study.
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1. Introduction

It is essential to employ an accurate free energy model to
derive a reliable phase diagram. The accuracy of a
calculated phase diagram is often assessed by the compar-
ison with an experimental phase diagram, where a particular
focus is placed on agreements/disagreements of transition
temperatures, invariant temperatures and corresponding
compositions.

It should be noted that a free energy formulae is
supposed to convey much more affluent information than
that required to calculate a phase diagram which is
determined by a vanishing condition of the first order
derivative. In fact, the second order derivative provides
information concerning the intrinsic stability of a given
system against the fluctuation, and vanishing condition of
the second-order derivative yields the locus of spinodal-
ordering temperature.[1] Furthermore, the inverse of the
second order derivative matrix in the Fourier space gives a
short range order (SRO) diffuse-intensity spectrum which is
directly comparable with a scattering experiment.

It is claimed that a reliable free energy model should be
able to derive this information in a consistent manner from a
single free energy formula. Among various free energy
models, it has been amply demonstrated that the cluster
variation method (CVM)[2] satisfies this criterion. In fact,
the author and his coworkers performed first-principles

investigations on the phase equilibria of a series of noble
metal alloys and calculated phase diagrams, locus of
spinodal-ordering temperatures and short-range-order dif-
fuse-intensity spectra based on CVM.[3,4]

Recently, the author and his coworkers have performed
first-principles calculations of L10-disorder phase boundary
in a series of Fe-based alloys including Fe-Ni, Fe-Pd and
Fe-Pt systems.[5–8] And it has been demonstrated that the
L10-disorder transition temperatures were obtained with
very high accuracy for Fe-Pd and Fe-Pt systems. For Fe-Ni
system, the first-principles calculations revealed[9] the
existence of an L10 ordered phase although this phase has
been missing in the conventional phase diagram.

The primary objective of the present study is to calculate
spinodal-ordering temperature and short-range-order dif-
fuse-intensity spectra associated with disorder-L10 transition
of Fe-Pt system by applying the theoretical procedure
employed for the noble metal alloys.[4] The organization of
the present report is as follows. In the next section, for the
sake of completeness, theoretical procedure of calculating a
phase diagram, spinodal-ordering temperature and short-
range-order diffuse-intensity spectrum, are reviewed. Then
the results are presented and discussed in the third section.

2. Theoretical Procedure of First-Principles
Calculations

2.1 Phase Equilibria Calculations

The free energy of formation of a phase n is formally
given as

DF nð Þ r; Tð Þ ¼ DE nð Þ
el rð Þ þ DE nð Þ

vib r; Tð Þ � T � DS nð Þ
vib r; Tð Þ;

ðEq 1Þ

where right-hand side is the sum of the heat of formation,
DEel

(n)(r), lattice vibration energy, DEvib
(n) (r, T), and vibration
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entropy, DSvib
(n) (r, T). Among these three terms, heats of

formation, DEel
(n)(r), are calculated by the spin-polarized

FLAPW method as a function of lattice constant, r (or
equivalently nearest neighbor atomic distance for a cubic
crystal). The lattice-vibration effects are evaluated based on
the Debye-Grüneisen theory within the quasi-harmonic
approximation.[10] The procedure of calculating the vibra-
tional contributions has been amply demonstrated in
previous articles[5–9,11,12] and the reader interested in the
procedure should consult them. The binding energy curve
which is equivalent to the heat of formation curve for each
phase n provides with the bulk modulus, Debye temperature
and Grüneisen constant, and based on this information,
vibrational energy and entropy are derived in a straightfor-
ward manner.

The particular phases studied in the present investigation
are five fcc-based structures, namely, Fe (n = 1), Fe3Pt
(n = 2) with L12, FePt (n = 3) with L10, FePt3 (n = 4) with
L12 and Pt (n = 5). In view of the fact that the most stable
ground state of pure Fe is not fcc but bcc with ferromagnetic
order, an additional calculation is performed on bcc Fe.

By following the procedure of the cluster expansion
method (CEM),[13] the free energy of formation is expanded
as

DF nð Þ r; Tð Þ ¼
X

m¼0
vm r; Tð Þ � nnm ðEq 2Þ

where vm(r, T) and nm
n are an effective cluster interaction

energy and a correlation function,[14,15] respectively, for a
cluster m. It is noted that a set of correlation functions {nm

n }
forms an orthonormal basis in the thermodynamic config-
uration space. In general practice, the number of phases
considered in the CEM is quite large, however in the present
study a minimum set of meaningful phases, n = 1-5, are
considered. Hence, the correlation functions {nm

n } form a
595 matrix and, therefore, the effective cluster interaction
energies up to a four-body tetrahedron cluster are derived
through,

vm r; Tð Þ ¼
X5

n¼1
nnm
� ��1�DF nð Þ r; Tð Þ ðEq 3Þ

It is noted that the present CEM is performed on
temperature-dependent heats of formation DF(n)(r, T) which
is defined with reference to the segregation limit at each
temperature.

With the effective cluster interaction energies, the free
energy of a disordered phase can be written as

DF ¼
X4

m¼0
vm r; Tð Þ � nm � T � DSConf ðEq 4Þ

where DSConf is a configurational entropy which can be
most efficiently described by the CVM that constitutes a
hierarchy structure in the level of approximation in terms of
a basic cluster which is the biggest cluster considered in the
entropy formula. In the present study, we employed the
tetrahedron approximation[16] that is recognized as a

minimum meaningful approximation in the CVM hierarchy
for a fcc based structure given as

DSConf ¼ kB � ln
Q

i;j Nyij
� �

!
n o6

N !

Q
i Nxið Þ!

� �5 Q
i;j;k;l Nwijkl

� �
!

n o2 ; ðEq 5Þ

where i,j,… indicate either Fe or Pt, and xi, yij and wijkl are
cluster probabilities of finding atomic arrangement specified
by subscript(s) on a point, pair and tetrahedron clusters,
respectively.

By substituting Eq 5 into Eq 4, the free energy is written
as

DF ¼
X4

m¼0
vm r; Tð Þnm � kBT

� ln

Q
i;j Nyij
� �

!
n o6

N !

Q
i Nxið Þ!

� �5 Q
i;j;k;l Nwaabb

ijkl

� �
!

n o2 ðEq 6Þ

It is noted that the free energy formula given above is for
a disordered phase, but the extension to an L10 ordered
phase is quite straightforward by distinguishing two kinds of
sub-lattices in the L10 ordered phase.

In Eq 6, the correlation functions {nm} and cluster
probabilities, {xi, yij,…, wijkl}, are mutually interrelated
through a linear transformation.[14,15] Hence, the free energy
is formally written as DF(vm(r, T), {nm}) and an equilibrium
state at a given temperature T is determined by minimizing
the free energy with respect to a set of correlation functions
{nm} and an atomic distance r,

@DF
@ nif g

����
T ; nj 6¼1f g;r

¼ 0 ðEq 7Þ

and

@DF
@r

����
T ; ni 6¼1f g

¼ 0 ðEq 8Þ

It is pointed out that the actual minimization of the free
energy is carried out after performing the Legendre
transformation on DF(vm(r, T), {nm}) to derive a grand
potential in which the point correlation function is replaced
by the effective chemical potential.

2.2 Spinodal Ordering and Short Range Order Diffuse
Intensity Scattering Spectrum

In general, the second-order derivative of the free energy,
DF(u), with respect to an independent variable u represents
the stability of the system against fluctuation of the variable
u. If the variable u is a concentration c, this is nothing but
the criterion of spinodal decomposition for which the
homogeneous solid solution becomes unstable against
concentration fluctuation and decomposes into two phases.
While, in the case of ordering system, u is a configurational
variable such as a correlation function, nm, as described in
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the previous section. And the physical meaning of the
stability is posed as the ordering instability, indicating that
the fluctuation of the configurational variable in a disordered
solid solution leads to the ordering reaction. Since theoret-
ical details have been amply described in previous
articles,[3,4,17,18] only essential points are reproduced here.

As seen in the previous section, the CVM free energy
generally contains multi configurational variables and,
therefore, it is mathematically convenient to discuss the
second-order derivative of the free energy in k-space by
performing a Fourier transformation.

It is noted that D of DF(vm(r, T), {nm}) indicates the free
energy of formation with reference to the segregation limit,
however in order to simplify the notation D is omitted to
denote F(vm(r, T), {nm}) and each correlation function is
regarded as a fluctuating variable u. Then, the deviation of
the free energy from a homogeneous state F0 is written as

dF ¼ F � F0 ffi
1

2

X

l;l0

X

p;p0

@2F

@ni � @nj
Dni pð Þ � Dnj p

0ð Þ (Eq 9)

where p and p¢ indicate lattice sites, Dni(p) is the deviation
of ith correlation function at a lattice point p from the
homogeneous state. By making use of the translational
symmetry of the homogeneous solid solution, one can
perform the Fourier transformation on Eq 9 to yield

FT dFð Þ ¼ 1

2

X

l;l0

X

k

fll0 kð Þ � DX �l kð Þ � DXl0 ðkÞ ðEq 10Þ

where FT indicates a Fourier transformation, DXl kð Þ is
defined as DXl kð Þ ¼

P
p Dnl pð Þ � exp �ik � pð Þ and DX �l kð Þ

is a conjugate variable of DXl kð Þ. By noting that the second
order derivative matrix fll0 kð Þ is a Hermitean matrix, one can
diagonalize the matrix to derive the eigenvalues,

FT dFð Þ ¼
X

l

X

k

Kl kð Þ � DZl kð Þj j2 ðEq 11Þ

where KlðkÞ and DZl kð Þj j are, respectively, the lth eigen-
value and the normal-mode amplitude. It is noted that in the
case of an homogeneous solid solution at a high temperature
all the eigen values are positive, while as the temperature is
lowered and as soon as one of the eigen values goes through
zero, the system becomes inherently unstable against the
excitation of a particular wave k0 associated with the
negative eigen value.

Then, the limit of the stability of an homogenous solid
solution against the configurational fluctuation is formally
given as the vanishing condition of the determinant of the
second-order derivative of the free energy matrix associated
with the zero of a specific eigenvalue,

det fll0 Ts; k0;Cð Þ ¼ 0; ðEq 12Þ

and the highest temperature at which this condition
is satisfied is defined as the spinodal ordering temperature,
Ts.

Finally, it has been amply discussed[3,4,17,18] that since
the diffuse intensity spectrum, I(k), in k-space is given
by

I kð Þ ¼ kB � T
N

f �111 kð Þ ðEq 13Þ

where N is the total number of lattice points in the system,
one can readily understand that the diffuse intensity at k0
becomes unbounded as approaching the spinodal ordering
temperature Ts.

3. Results and Discussion

The calculated disorder-L10 phase diagram is reproduced
in Fig. 1[5] by solid lines. The transition temperature
reported by experiment is about 1600 K at 50 at.% while
our first-principles calculation yields 1610 K which is in
good agreement with the experimental value. It is noted that
the temperature dependent heats of formation DF(n)(r, T) in
Eq 2 and 3 are derived by including vibrational free energy
contribution evaluated through Debye-Grüneisen model for
each phase n in addition to the electric contribution. Without
vibrational energy contribution, the disordered phase is
understabilized and order-disorder transition temperature is
overestimated.[5] The temperature dependence of long-
range-order parameter at 50 at.% in Fig. 2 confirms that
the L10-disorder transition is of the first order.

Fig. 1 Disorder-L10 phase boundary (diamond symbols linked
by solid lines)[5] and spinodal-ordering temperature (dots) for the
Fe-Pt system

Fig. 2 Temperature dependence of long-range-order parameter
at 50 at.%
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The calculated SRO diffuse-intensity spectra on (001)
plane in k-space are shown in Fig. 3(a) and (b) at 50 at.% at
two temperatures, 3000 and 1650 K. One sees that the
intensity distribution becomes sharper with decreasing the
temperature and that the diffuse-intensity maxima appears
from (1,0,0) towards (1,1/2,0) along Æ010æ in both cases. In
fact, (1,0,0) and (1,1/2,0) are two of four special points
which are closely related to underlying ordered phases in the
fcc structure. These special point family and corresponding
ordered phases have been discussed based on symmetry of
the lattice and are displayed in Fig. 4.[17] The vertical axis
indicates the ratio, a, of the second (v2,2) to the first (v2,1)
nearest neighbor effective pair interaction energies with
v2,1 > 0, and the stable ordered phases at 50 at.% found by
the ground state analysis[19,20] are displayed together with
the corresponding special points. The fact that the intensities
at the two special point positions are identical in Fig. 3(a)
and (b) indicates the degeneracy of the stability of the two
corresponding phases, L10 for Æ100æ and Chalcopyrite for
Æ1 1/2 0æ. In fact, these two phases are energetically
degenerated at the ground state within the nearest neighbor

pair interaction as shown in Fig. 4 (a = 0). In order to lift
the degeneracy, one needs to include the second nearest
neighbor pair interaction energy and the entropy should be
formulated based on the tetrahedron-octahedron approxi-
mation of the CVM.[14,15] This is beyond the scope of the
present study, however we attempted subsidiary calculations
to obtain second nearest neighbor pair interaction energy by
a larger set of ordered phases in Eq 3. The effective
interaction energies at 0 K are shown in Fig. 5. One sees

Fig. 3 Short-range-order diffuse-intensity spectra at 3000 K (a)
and 1650 K (b) in (001) plane in k-space at 50 at.%

Fig. 4 Most stable ground-state phases and corresponding spe-
cial-point ordering waves for fcc-based systems at 1:1 stoichiom-
etry as a function of second (v2,2) to the first (v2,1) nearest
neighbor pair-interaction energies

Fig. 5 Effective cluster-interaction energies as a function of lat-
tice constant up to a tetrahedron cluster and second nearest
neighbor pair. The vertical broken line indicates the lattice con-
stant at 50 at.% at 0 K
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that the first nearest neighbor pair interaction energy is
positive and the second nearest neighbor pair interaction
energy is negative at a lattice constant corresponding to
50 at.% as indicated by a vertical broken line, which
confirms the stability of L10 ordered phase as shown in
Fig. 4. However, the magnitude of v2,2 is quite small and
one may not expect a drastic change of the intensity
distribution even if v2,2 is included in the analysis.

Shown in Fig. 6(a)-(c) are the plots of the I kð ÞTð Þ�1 vs.
T for the four kinds of k vectors corresponding to special
points. SRO diffuse-intensity is abbreviated as SROI on the
vertical axis. One can see that the Æ100æ and Æ1 1/2 0æ waves
fall off towards zero (intensity I(k) blows up) quickly as the
temperature is lowered, see Fig. 6(a). This indicates that the
stability of the system is lost against the excitation of Æ100æ
and Æ11/20æ ordering waves and the system decomposes into

underlying superlattice structure at Ts = 1400 K at which
I kð ÞTð Þ�1 becomes zero. The other waves Æ1/2 1/2 1/2æ and

Æ000æ decay as the temperature is lowered towards Ts. In
view of the facts that the Æ100æ ordering wave represents the
L10 ordered structure and the degeneracy is lifted in favor of
the L10 ordered phase when the second nearest neighbor
pair interaction energy is included, only Æ100æ stability is
considered in the following.

Similar calculations are performed at other alloy com-
positions to determine the locus of the spinodal ordering
temperature[1] as shown by a dotted line in the phase
diagram in Fig. 1. The physical significance of the spinodal
ordering temperature is as follows. In the temperature range
between the spinodal ordering temperature and the phase
boundary, disorder-L10 ordering takes place by nucleation-
growth mechanism while below the spinodal ordering
temperature L10 is formed spontaneously by the excitation,
amplification and propagation of Æ100æ ordering wave.
Hence, the separation of the two temperatures represented
by the spinodal ordering locus and phase boundary is a
measure of the magnitude of the first and second order
natures of the transition. When the two temperatures
coincide, the transition is of the second order, while the
more the two temperatures are separated the more the first
order nature is emphasized. In fact, the abrupt change of the
long range order (LRO) parameter near the transition
temperature shown in Fig. 2 agrees with this result.

In the present study, starting from a single free energy
formula, we derived a phase diagram, spinodal-ordering
temperature and short-range-order diffuse-intensity spec-
trum for disorder-L10 transition of the Fe-Pt system. The
transition temperature agrees with the experimental one with
high accuracy, the depth of the spinodal-ordering temper-
ature with reference to the transition temperature confirms
the first-order nature of the transition and the short-range-
order diffuse-intensity spectrum produces the intensity
maximum at the correct position in k-space. All these
results indicate the reliability and accuracy of the CVM-
based free energy. It is claimed that the second-order
derivative of the free energy provides with affluent infor-
mation associated with phase equilibria, and that the
reliability of the free energy employed for phase equilibria
calculations should be examined not only by the agreement/
disagreement of the phase boundaries but also by the
consistencies among transition and spinodal-ordering tem-
peratures and short-range-order diffuse intensities.
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