Fe-P-Y (Iron-Phosphorus-Yttrium)

V. Raghavan

A partial isothermal section for this system at 800 °C was determined recently by [2002Ori]. The section depicts two ternary compounds.

Binary Systems

A partial phase diagram is known for the Fe-P system [1982Kub]. The intermediate compound Fe₃P forms through a peritectic reaction at 1166 °C between liquid and Fe₂P. Fe₂P forms congruently at 1370 °C. Fe₃P is body centered tetragonal with the Ni₃P-type structure. Fe₂P has the hexagonal C22 structure. The other intermediate phases at higher P contents are FeP (orthorhombic MnP type), FeP₂ [orthorhombic FeS₂ (marcasite) type], and FeP₄ (monoclinic). The Fe-Y phase diagram [1992Zha] depicts four intermediate phases with limited or no homogeneity ranges: Y_2Fe_{17} , Y_6Fe_{23} , YFe_3 , and YFe_2 . See [1992Zha] for crystal structure data. The Y-P phase diagram is not known. The compound YP has the cubic NaCl type structure.

Ternary Isothermal Section

With starting materials of 99.95 Fe, 99.98 P, and 99.5 Y (all at.%), Orishchin et al. [2002Ori] melted 17 ternary alloy compositions in an arc furnace under Ar atm. The alloys were finally annealed at 800 °C for 500 h and quenched in water. The phase equilibria were studied mainly by x-ray

powder diffraction, supplemented by metallography and electron probe microanalysis. The isothermal section at 800 °C determined by [2002Ori] up to 50 at.% P is redrawn in Fig. 1 to agree with the accepted binary data. Two ternary compounds are stable at this temperature. $Y_2Fe_{12}P_7$ (denoted τ_1 here) has the hexagonal $Zr_2Fe_{12}P_7$ type of structure. The crystal structure of YFe_5P_2 (the experimentallydetermined composition is $YFe_{4.8}P_{1.8}$), denoted τ_2 in Fig. 1, was not resolved. The ternary compound YFe_5P_3 [1984Jei] was not found at this temperature. The compound YP forms tie lines with the two ternary compounds as well as with all the binary compounds (except Fe_3P). The solubility of the third component in the binary phases is negligible. Y_2Fe_{17} , which has two crystal modifications, was found to have the hexagonal Th₂Ni₁₇ type structure at 800 °C [2002Ori].

References

- **1982Kub:** O. Kubaschewski: "Iron-Phosphorus" in *Iron Binary Phase Diagrams*, Springer-Verlag, Berlin, 1982, pp. 84-86.
- **1984,Jei:** W. Jeitschko, U. Meisen, and U.D. Scholtz: "Ternary Lanthanoid Iron Phosphides With YCo₅P₃ and Zr₂Fe₁₂P₇-type Structures," *J. Solid State Chem.*, 1984, *55*, pp. 331-36.
- **1992Zha:** W. Zhang, G. Liu, and K. Han: "The Fe-Y (Iron-Yttrium) System," *J. Phase Equilibria*, 1992, *13*(3), pp. 304-08.
- 2002Ori: S.V. Orishchin, O.V. Zhak, S.L. Budnik, and Yu.B. Kuzma: "The Y-Fe-P System," *Zhur. Neorg. Khim.*, 2002, 47(9), pp. 1541-44 (in Russian); TR: *Russ. J. Inorg. Chem.*, 2002, 47(9), pp. 1411-14.

Fig. 1 Fe-P-Y isothermal section at 800 °C [2002Ori]. Narrow two-phase regions around tie-triangles are omitted