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Abstract In this study, the linear free vibration of intact

and cracked functionally graded material plates is investi-

gated numerically and experimentally. The experimental

work is limited to the isotropic materials. The numerical

work is based on finite element, where a code is developed

to obtain the natural frequencies of intact plates based on

the first-order shear deformation theory (FSDT) using

MATLAB software. Also, a model of through-cracked

FGM plate is developed using ANSYS Workbench with

the help of APDL coding. The material properties of the

plates under study are graded in one, two, and three

directions. The novelty of this study emerges through its

examination of the synergistic impacts resulting from

variations in FGM material properties, crack length, crack

orientation, and crack location. These effects are compre-

hensively discussed in the results section. The result of the

present model shows that the use of three-directional FGM

reduces the natural frequency compared with the other

cases of two-directional and unidirectional FGM. Also, the

results show that the effect of FGM gradient on the fre-

quency of intact and cracked plate is high when the

gradient index n\3: The present paper results are useful

for the design of FGM plates especially when cracks exist.

Keywords FGM � Through cracks � Plates � ANSYS �
Finite element � Free vibration � Experimental analysis �
FSDT

Abbreviations

a Plate length or dimension in the x-direction

b Plate width or dimension in the y-direction

B½ � Strain-displacement matrix

Be
b

� �
; Be

s

� �
Strain-displacement matrix for bending and

shear

c Crack length

d Vertical distance from the horizontal lower

edge of the plate to the crack center

dAe Area of the element

Diso Flexural rigidity of the plate

D½ � Material constants matrix

½Db ; ½Ds� � Material constants matrices for bending and

shear

E The modulus of elasticity at any point in the

FGM plate

Em;Ec Modulus of elasticity of the metal and

ceramic materials

h Plate thickness

Ke Element stiffness matrix

K½ � Global stiffness matrix

Me Element mass matrix

M½ � Global mass matrix

n Material gradient index or volume fraction

exponent
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nx; ny; nz Material gradient index in x-direction, y-

direction, and z-direction

Ni½ � Shape functions matrix

u; v; w Displacement of a point in the plate along x-,

y-, and z-directions

Ue Strain energy stored in an element

Vc Ceramic volume fraction

x; y; z The coordinates of a point along the x-, y-,

and z-directions in the plate

df g Nodal displacements vector

dc Dimensionless crack position ratio

ef g Strain tensor

exx; eyy Normal strain components in x- and y-

directions

exy In-plane shear strain component in x� y

plane

cxz; cyz Out-of-plane shear strain component in x� z

and y� z planes

hx; hy Rotations about the x-axis and y-axis,

respectively

j Shear correction factor

m The Poisson’s ratio at any point in the FGM

plate

mm; mc Poisson’s ratio of the metal and ceramic

materials

n Dimensionless crack length ratio

q The density at any point in the FGM plate

qm; qc Density of the metal and ceramic materials

rf g Stress tensor

rxx ryy Normal stress components in x- and y-

directions

rxy In-plane shear stress component in x� y

plane

sxz; syz Out-of-plane shear stress component in x� z

and y� z planes

x; x̂ Dimensional natural frequency of the plate

Hz and
rad
sec, respectively

XIso; XFGM Dimensionless natural frequency of isotropic

and FGM plates, respectively

Introduction

Plates are essential engineering components vastly used in

several industrial applications such as shipbuilding, auto-

motive and aerospace industries, and civil steel

constructions. Due to the continuous advances in modern

industries, the necessity to develop new materials, which

are capable of functioning in harsh working conditions, is

increased. This led to designing new materials like func-

tionally graded materials (FGMs) that can be tailored to

obtain particular properties according to the required

application [1]. FGM plates are made of two or more

materials, usually metals and ceramics. The properties of

these plates vary continuously along a specific plate

dimension according to the volume fraction of the con-

stituent materials.

The presence of cracks alters the response of plates to

loads and shortens the expected service life of the used

plates. Cracks may appear in plates during the manufac-

turing process or due to cyclic loading. Consequently,

investigating the static and dynamic behavior of cracked

plates becomes vital to ensure their effectiveness and

reliability in different applications.

The static and dynamic analysis of intact (uncracked)

plates was intensively investigated in many textbooks

[2–5]. Mainly, the governing equations to obtain deflec-

tions and natural frequencies of plates are based on several

theories with different assumptions. The most common

plate theories are the classical plate theory (CPT) or

Kirchhoff–Love plate theory and the Mindlin plate theory

or the first-order shear deformation theory (FSDT). The

CPT assumes that a plate section taken normal to the pla-

te’s middle surface remains plane and normal after the

deformation neglecting the transverse shear deformation

effect. Consequently, the CPT yields reasonable results for

thin plates. On the other hand, the CPT is not valid for

thick plates. The FSDT, which includes the transverse

shear deformation effect, is used for moderately thick

plates instead [6]. The assumption of the section perpen-

dicular is relaxed in the FSDT theory. In the FSDT, the

transverse shear stress distribution is constant, which con-

tradicts the actual distribution. This issue is a result of

assumed constant shear strains. However, shear correction

factors are introduced into the shear stress resultants to

correct the discrepancy. On the contrary, the higher-order

shear deformation theory (HSDT) eliminates the necessity

to use shear correction factors by introducing higher-order

polynomial displacement functions [7–10]. The assumed

functions cause the plate sections to be no longer straight

after deformation. Higher-order deformation theories add a

slight increase in accuracy at the cost of significantly

increased complex equations and computational effort.

That is why theories higher than the third-order shear

deformation theory (TSDT) are less preferable unless the

additional accuracy is required.

There is a large volume of publications that discuss the

static and vibration analysis of cracked plates made of

isotropic, orthotropic, and functionally graded material
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(FGM). The most crack types that can be seen in these

publications are part-through surface cracks, through

cracks, all-over part-through cracks, side cracks, and

internal cracks. Different approaches were attempted to

perform the analysis either theoretically, experimentally, or

both. The theoretical analysis can be done using analytical,

variational iteration method [11] or numerical methods.

The analytical solution for such problem is more involved

and requires a lot of approximation to reach an analytical

form [12–15]. Numerous publications studied static and

vibration analysis of plates containing a part-through crack

using an approximate analytical solution called the line

spring model (LSM). The LSM was initially proposed by

Rice and Levy [16], while studying a thin center-cracked

isotropic rectangular plate under uniform tension and

moment. The LSM treats the crack as a continuous line

having compliance coefficients. Delale and Erdogan [17]

modified the LSM obtaining the stress intensity factors

(SIFs) of surface cracks in thick plates by including the

transverse shear deformation. SIFs were obtained for plates

subjected to different loading conditions. Mode I and III

SIFs of a plate with an inclined surface crack under biaxial

loading conditions were determined by Zhao-Jing and Shu-

Ho [18]. Joseph and Erdogan [19] obtained SIFs for mode

II and III of a cracked plate subjected to antisymmetric

loading conditions. The LSM was utilized by several

researchers to study the dynamic characteristics of part-

through-cracked plates. In these publications, Berger’s

formulation and Galerkin’s method were employed to

transform the governing equation of the cracked plate to a

nonlinear Duffing equation. The Duffing equation can be

solved according to the multiple scale’s approximate

solution method. Israr, et al. [20] investigated a part-

through center-cracked isotropic plate under tension and

moment loads. The study illustrated the effect of both crack

length and plate geometry on the natural frequency for

three different boundary conditions. Following the same

solution method, Ismail and Cartmell [21] and Bose and

Mohanty [22] discussed a model of a variably oriented

surface cracked thin plate. In the former research article, a

plate under tension and moment loads is studied. In the

latter research article, the effects of a combination of

biaxial tension, bending, shear, and twisting stresses on a

cracked plate with arbitrary orientation and position are

investigated. Both articles illustrated the effect of crack

orientation angle on the frequency. Thin orthotropic

cracked plates were investigated by Joshi, et al. [23],

concluding that a crack located across the material fibres

decreases the plate’s natural frequency compared to a crack

located along the fibres. Furthermore, the LSM can be

utilized to analyze the dynamic characteristics of FGM

plates, where the gradient of the material is along the

thickness direction. An internally cracked rectangular thin

FGM plate was studied by Joshi, et al. [24]. Gupta, et al.

[25] replaced the internal crack with a partial-through

crack. Their results show the effect of crack length, crack

orientation, plate thickness, and gradient index on the

fundamental frequency of the plate. The research on the

same plate model was extended by Gupta, et al. [26] to

include the effect of the thermal environment. In addition

to the thermal environment, Soni, et al. [27] added fluid

forces representing a fluid medium surrounding the plate

model to study their effect on the dynamics of the FGM

plate.

Several numerical methods were used for plate analysis

in the published literature such as finite difference method

[28–30], the Ritz method [31–35], the finite element

method (FEM). The Ritz method was employed in several

publications to study plates with side and internal cracks.

Huang and Leissa [31] applied the Ritz method to study the

free vibration of thin rectangular isotropic plates with side

cracks of different locations, lengths, and orientations.

Later, Huang, et al. [32, 33] modified their work to study

thick side-cracked plates and internally cracked rectangular

plates, respectively. The Ritz method was applied by

Huang, et al. [34] and Uymaz, et al. [35] to investigate the

effect of changing the volume fraction on natural fre-

quencies and the mode shapes of FGM plates with property

variation through plate thickness and in-plane directions,

respectively.

It can be observed in the literature that the finite element

method (FEM) is employed in many publications to ana-

lyze cracked structures. The ability of the FEM to model

irregular geometries and the ease to apply boundary con-

ditions gives FEM an advantage over other analytical

methods. Several researchers applied FEM to study the

dynamic response of plates with a center-through crack.

Guan-Liang, et al. [36] constructed a finite element model

of cracked plate using the integral of stress intensity factor.

The natural frequencies of a simply supported and can-

tilever plate were obtained and compared to experimental

ones for verification. Krawczuk and Gdansk [37, 38]

obtained the flexibility matrix of a cracked plate finite

element as a summation the flexibility matrix of uncracked
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element to the flexibility matrix caused by the crack. The

flexibility matrix is then used to get the stiffness matrix,

thus obtaining the natural frequency of the plate. Side-

cracked Mindlin plates were also studied by Azam, et al.

[39] using FEM. They investigated the effect of crack

length and orientation on the dynamic behavior of a square

isotropic cracked plate for various boundary conditions.

Plates made of functionally graded material were the

subject of various publications, and the majority of the

analysis in these publications is done using FEM. Reddy

[40] presented Navier’s solutions and a finite element

model to study the static and dynamic behavior of FGM

plates. Talha and Singh [41] developed higher-order shear

deformation theory with a special modification in the

transverse displacement to study the static and the dynamic

response of FGM plates. Minh, et al. [42, 43] employed

Shi’s high-order shear deformation theory[44], the phase

field theory, and FEM to study the free vibration of a

cracked FGM with variable thickness. Also, Minh and Duc

[43] considered temperature-dependent material properties

through the thickness direction in their study.

A major problem that faced the traditional FEM when

modeling crack growth problems is the necessity to repeat

the meshing process to adapt to the change in the dimen-

sions of the discontinuity. The extended finite element

technique (X-FEM) [45] was proposed by Belytschko and

Black [46] to overcome the drawbacks of the traditional

FEM. The authors studied the elastic fracture propagation

relying on the partition of the unity property noted by

Melenk and Babuška [47]. In X-FEM, the geometry is

discretized using the conventional FEM; then enrichment

functions of nodal elements containing the crack are added.

Moës, et al. [48] enhanced the work of Belytschko and

Black [46] by introducing the Heaviside function to model

the crack away from the crack tip. A number of researchers

employed the X-FEM in their work concerning vibrational

studies. Bachene, et al. [49, 50] applied X-FEM to study

the vibration of Mindlin isotropic plates with side- and

center-through cracks. The authors computed the nondi-

mensional fundamental frequency for different crack

length values at different boundary conditions. Natarajan,

et al. [51] studied FGM plates with properties vary in the

thickness direction by a simple power law. The authors

investigated the effect of the gradient index, crack location,

crack length, crack orientation, and the thickness on the

natural frequency of the FGM plate using 4-noded element

with 20 degrees of freedom.

Modeling a problem using the finite element method can

also be done using commercial finite element software

packages such as ANSYS, ABAQUS. The results from

these simulation programs proved to be consistent with the

analytical, numerical, and experimental results seen in the

literature. Hosseini-Hashemi, et al. [52] used both the

analytical method of LSM and ABAQUS software to study

the free vibration of all over part-through isotropic plates.

The authors investigated the effect of crack depth, crack

location, and plate dimensions on the natural frequency.

Nkounhawa, et al. [53] performed a modal analysis of a

thin isotropic rectangular plate using both the method of

separating the variables and ANSYS software. Pingulkar

and Suresha [54] used ANSYS software to obtain the

natural frequencies and the mode shapes of glass and car-

bon fiber-reinforced polymer composites. The authors

discussed the effect of changing the matrix material, the

stacking sequence, and the volume fraction on the natural

frequency of the plate. Al-Shammari [55] investigated the

effect of the crack length and orientation on the natural

frequency of a cracked sandwich plate. The sandwich plate

is made from stainless steel with Teflon core. He obtained

the results numerically using ANSYS and then validated

them experimentally. Modal analysis of a square intact

FGM plate was performed by Tabatabaei and Fattahi [56]

using ABAQUS coupled with FORTRAN code. The

analysis is done for different values of material gradient

indices where the material properties vary along the

thickness of the plate according to the simple power law.

More recently, the rapid advancements in neural net-

work and machine learning have opened up new

possibilities for solving partial differential equations. Guo,

et al. [57] solved the fourth-order biharmonic equation of

Kirchhoff plates using the deep collocation method

(DCM). Plates of various shapes subjected to different

boundary conditions and loads were included in their study.

In the study by [58], the authors studied the bending,

Fig. 1 The geometry and dimensions of an intact plate
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vibration, and buckling of Kirchhoff plates using deep

autoencoder-based energy method (DAEM). Lastly, phy-

sics-informed neural network (PINN) algorithm was

proposed by Goswami, et al. [59] to solve several brittle

fracture problems which included cracked plates.

From the previous literature, it can be realized the

importance of investigation of cracked plates and the

Fig. 2 A representation of a FGM square plate with a unidirectional

variation of the volume fraction (Vc). The gradient index is taken to be

1.0 in each case. Figure (a) shows the variation through the x-

direction, while figure (b) shows the variation through the z-direction.

The blue and red colors represent the metal and the ceramic-rich

portion of the plate, respectively (Color figure online)

Fig. 3 A representation of a FGM square plate with a

multidirectional variation of the volume fraction (Vc). The gradient

index is taken to be 1.0 in each case. Figure (a, b) shows a two-

directional variation across the x� y plane and the x� z plane, while
the variation in figure (c) is a three-directional variation through the

x; y; z-directions simultaneously. The blue and red colors represent

the metal and the ceramic-rich portion of the plate, respectively

(Color figure online)
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investigation of new materials using function-graded

materials and this is the main topic of the present paper.

After this introduction, Section ‘‘Theoretical Model and

Experimental Analysis’’ presents the theoretical formula-

tion based on FSDT, finite element model using ANSYS

WORKBENCH, and experimental verification analysis.

Then, Section ‘‘Results’’ presents the model verification

results and the present new results. The effect of FGM

Fig. 4 Finite element discretization of intact and cracked plates using ANSYS mechanical. SOLID185 hexahedral elements are used for intact

plates in figure (a), while a combination of hexahedral and wedge elements is used for cracked plates in figures (b, c)
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parameters and crack parameters on the dynamics of plate

is investigated. Section ‘‘Results’’ includes also the dis-

cussion of these results. Finally, the remarkable results are

presented in the conclusion section.

Theoretical Model and Experimental Analysis

Consider a functionally graded material plate made from a

metal–ceramic mixture in the Cartesian coordinate system,

as shown in Fig. 1. x; y, and z are the coordinates of a point

along the x; y; and z direction in the plate. The plate

dimensions in the x; y, and z directions are length (a), width

(b), and thickness (h), respectively. In this study, the effect

of changing the material properties gradient’s direction on

the plate’s dynamic behavior is discussed. Different cases

of the unidirectional and multi-directional variation of the

ceramic volume fraction Vc, thus the material properties,

can be displayed in Figs. 2 and 3. Power law distribution is

used to describe the variation of material properties in these

cases. In Fig. 2(a), the material properties are graded along

the x-direction. The left surface (x ¼ 0) is the metal-rich

surface of the plate, while the ceramic-rich surface is at the

right surface (x ¼ a). Similarly, the material properties are

graded along the z-direction in Fig. 2(b). The bottom sur-

face (z ¼ h
2
) is the metal-rich surface of the plate, while the

ceramic-rich surface is at the top surface (z ¼ �h
2
). Two-

directional variation of Vc through the x� y and x� z

planes is illustrated in Fig. 3a and b. In the former figure,

the properties are graded from the plate’s ceramic-rich

portion at (x ¼ 0; y ¼ 0) to the metal-rich portion at (x ¼ a,

y ¼ b). On the contrary, the variation is from the ceramic-

rich portion of the plate at (x ¼ 0, ¼ �h
2
) to the metal-rich

portion at (x ¼ a, z ¼ h
2
) in the latter figure. The ceramic

volume fraction at a point in the plate can be expressed as:

Vc x; y; zð Þ ¼ xnx

a

yny

b

2zþ hnz

2h
; nx; ny; nz � 0
� �

; ðEq 1Þ

where nx; ny, and nz are the material gradient indices (or the

volume fraction exponents) in the x; y; z-directions,

respectively. The summation of the volume fractions of the

metal and ceramic material must equal unity. According to

the rule of mixtures, the modulus of elasticity E, the den-

sity q, and the Poisson’s ratio m can be expressed as:

E x; y; zð Þ ¼ Em þ Vc Em � Ecð Þ;
q x; y; zð Þ ¼ qm þ Vc qm � qcð Þ;
m x; y; zð Þ ¼ mm þ Vc mm � mcð Þ;

ðEq 2Þ

where the subscripts m and c indicate the metal and cera-

mic materials.

The displacement of a point in the plate along x; y; z-

directions are u, v, and w, respectively. According to the

FSDT, the displacement field can be expressed as:

u x; y; z; tð Þ ¼ �zhy x; y; tð Þ;
v x; y; z; tð Þ ¼ �zhx x; y; tð Þ;
w x; y; z; tð Þ ¼ w0 x; y; tð Þ;

ðEq 3Þ

where hx and hy denote rotations about the x-axis and y-

axis, respectively. The linear strains corresponding to the

displacement field can be written in a matrix form as:

ef g ¼

exx
eyy
exy
cxz
cyz

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼

u;x
v;y

u;y þ v;x
w;x þ u;z
w;y þ v;z

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼

�zhy;x
�zhx;y

�zðhy;y þ hx;xÞ
w;x � hy
w;y � hx

8
>>><

>>>:

9
>>>=

>>>;

;

ðEq 4Þ

where the comma in the subscript denotes the partial

derivative of the variable with respect to the following

coordinate x; y; or z. The linear constitutive relation can be

evaluated as the following:

rxx
ryy
rxy
sxz
syz

8
>>><

>>>:

9
>>>=

>>>;

¼

Db11 Db12 Db13 0 0

Db21 Db22 Db23 0 0

Db31 Db32 Db33 0 0

0 0 0 Ds11 Ds12

0 0 0 Ds21 Ds22

2

66664

3

77775

ex
ey
exy
cxz
cxz

8
>>><

>>>:

9
>>>=

>>>;

;

ðEq 5Þ

or in a compact form as the following:

rf g ¼ D½ � ef g;

where rxx, ryy, and rxy are the in-plane stresses, while sxz
and syz are the out-of-plane stresses. Dbij(i; j = 1, 2, 3) and

Dsij (i; j = 1 ,2) are the elements of the material constants

matrices for bending and shear, respectively. Db½ � and Ds½ �
can be expressed as:
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Db ¼
E x; y; zð Þ

1� m2 x; y; zð Þ

1 m x; y; zð Þ 0

m x; y; zð Þ 1 0

0 0
1�m x;y;zð Þ

2

2

64

3

75 and

Ds ¼
E x; y; zð Þ

2 1þ m x; y; zð Þð Þ
1 0

0 1

� �
:

ðEq 6Þ

The assumptions of the Mindlin plate theory reduce the

three-dimensional plate problem into a two-dimensional

one. The finite element discretization of the 2D plate’s

midplane forms quadrilateral elements. In this study, linear

quadrilateral elements with three degrees of freedom

(w; hy; hx) at each node are used. The displacement vector

df g containing the degrees of freedom is given by:

df g ¼
Xk

i¼1

Ni½ � dif g; ðEq 7Þ

where dif g ¼
wi

hyi
hxi

8
<

:

9
=

;
:

Ni and di are the shape functions and the nodal dis-

placement for each node i. k is the total number of nodes in

one element. Like Eq. 7, the stress and the strain fields in

Eqs. 4 and 5 become:

ef g ¼ Be
i

� �
dif g; rf g ¼ D½ � Be

i

� �
dif g; ðEq 8Þ

Fig. 5 The first six natural frequencies are obtained experimentally

and by using the modal analysis in ANSYS software. The frequencies

evaluated by the modal analysis, represented by solid lines, are

evaluated for a range of elastic moduli Eð Þ. The experimentally

measured frequencies of the plate sample, whose the elastic modulus

to be determined, are represented by dashed lines
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Fig. 6 Intact and cracked plate samples prepared for the experimental measurement of the natural frequency. Each sample is marked with

thirteen points at equal distances. These points label the locations of impacting the plate with the hammer and mounting of the accelerometer

Fig. 7 Schematic diagram of the experimental setup used to measure the frequency of intact and cracked plate samples
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Fig. 8 The main dimensions of the FGM plates under study in the

results section. The plates have different configurations of through

cracks shown in figures (a–c) as the following (a) horizontally centre-

cracked plate. The crack is parallel to the x-direction and has a length

equal to c. (b) Slanted through crack at the center. The crack is at

angle (h) with the x-axis direction and has a length equal to c. (c) Off-
center-through crack. The crack has a length equal to c and at a

distance d from the plate edge a
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Table 1 A comparison between the dimensionless natural frequencies of a steel plate obtained from the FEM and the experimental setup for

different dimensionless crack ratio ðnÞ

n Xi Experimental

FEM (ANSYS)

n Xi Experimental

FEM (ANSYS)

SOLID185 SHELL181 SOLID185 SHELL181

0 X1 13.6333 13.5689 13.5876 0.55 X1 12.9503 13.5311 13.5613

X2 20.1912 19.8151 19.8192 X2 16.5500 17.0714 17.1689

X3 24.1370 24.5381 24.5463 X3 21.9920 22.1454 22.1740

X4 34.9833 35.0576 35.1084 X4 31.8917 33.2631 33.3578

0.25 X1 13.0526 13.5528 13.5769 0.7 X1 13.0104 13.5131 13.5462

X2 18.7040 19.4278 19.4574 X2 14.7466 15.0248 15.1461

X3 23.3236 23.6180 23.6703 X3 21.5746 21.8816 21.8978

X4 33.6559 34.9817 35.0367 X4 29.0195 29.8970 30.0446

0.4 X1 12.9530 13.5429 13.5702 0.85 X1 12.1281 12.5066 12.6605

X2 17.8559 18.5909 18.6535 X2 13.3501 13.4818 13.5178

X3 22.5280 22.7278 22.7755 X3 21.3802 21.7748 21.7855

X4 33.2024 34.5767 34.6431 X4 24.0761 24.4705 24.6453

Table 2 The first four dimensionless natural frequencies of a simply supported (SUS304/Si3N4) FGM thick (ah = 10) plate for different values of

the gradient index across the thickness

Gradient index

ModeCeramic 0.5 1.0 5.0 10 Metal

Current study Talha and Singh [41] 5.7523 3.9701 3.4845 2.8351 2.6973 2.5154 1

SOLID185 5.4433 3.7954 3.3295 2.7167 2.5891 2.4174

SHELL181 5.6807 4.1265 3.4884 2.5572 2.5106 2.5091

FDST 5.6846 4.1465 3.4908 2.5321 2.4841 2.5107

Current study Talha and Singh [41] 14.0336 9.6890 8.4903 6.8941 6.5669 6.1361 2

SOLID185 13.2707 9.2401 8.0992 6.5891 6.2780 5.8661

SHELL181 13.5868 9.8605 8.3300 6.0963 5.9845 5.9809

FDST 13.6176 9.9169 8.3487 6.0558 5.9410 5.9941

Talha and Singh [41] 14.0354 9.6906 8.4918 6.8952 6.5680 6.1370 3

Current study SOLID 185 13.2707 9.2401 8.0992 6.5891 6.2780 5.8661

SHELL 181 13.5868 9.8605 8.3300 6.0963 5.9845 5.9809

FDST 13.6176 9.9169 8.3487 6.0558 5.9410 5.9941

Talha and Singh [41] 21.6188 14.9404 13.0959 10.6102 10.1053 9.4515 4

Current study SOLID185 20.1753 14.0529 12.3139 9.9922 9.5224 8.9142

SHELL181 20.8931 15.1514 12.7926 9.3494 9.1771 9.1718

FDST 20.9409 15.2297 12.8212 9.3000 9.1238 9.1917
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where Bi½ � ¼

0 �Ni;x 0

0 0 �Ni;y

0 �Ni;y �Ni;x

Ni;x �Ni 0

Ni;x 0 �Ni

2

66664

3

77775
:

Be
i

� �
is the strain-displacement matrix. The first three

rows form the bending strain-displacement matrix Be
bi

� �
,

while the last two rows are associated with shear forming

Be
si

� �
. The potential energy Ue of an element can be

obtained as:

Ue ¼ 1

2
r
h=2

�h=2

z2 r
Ae

dTi Be
b

� �T
De

b

� �
Be
b

� �
dTi dAedz

þ j
2

r
h=2

�h=2

r
Ae

dTi Be
s

� �T
De

s

� �
Be
s

� �
dTi dAedz;

ðEq 9Þ

where Ae; j is the area of the element and shear correction

factor, respectively. The element stiffness matrix Ke and

mass matrix Me can be calculated from:

Ke ¼ h3

12
r
Ae

Be
b

� �T
De

b

� �
Be
b

� �
dAe þ jh r

Ae

Be
s

� �T
De

s

� �
Be
s

� �
dAe;

ðEq 10Þ

Me ¼ r
Ae

q Ni½ �T I½ � Ni½ �dAe; ðEq 11Þ

where I½ � ¼
h 0 0

0 h3

12
0

0 0 h3

12

2

4

3

5:

Numerical integration is used to solve Eqs. 10 and 11 to

obtain the stiffness and mass matrix for each element. After

that, the global stiffness matrix K½ � and mass matrix M½ � are
then assembled by traditional technique. Finally, after

applying boundary conditions, the natural frequencies of an

intact plate in a free vibration mode can be obtained as the

following:

ð K½ � � x̂2 M½ �Þ df g ¼ 0; ðEq 12Þ

where x̂ is the natural frequency of the plate.

Table 3 The first four dimensionless natural frequencies of a clamped (SUS304/Si3N4) FGM thick (ah =10) plate for different values of the

gradient index across the thickness

Gradient index

ModeCeramic 0.5 1.0 5.0 10 Metal

Current study Talha and Singh [41] 10.1599 7.0202 6.1489 4.9816 4.7457 4.4410 1

SOLID185 9.7808 6.8068 5.9615 4.8367 4.6074 4.3079

SHELL181 9.7348 7.0599 5.9610 4.3570 4.2768 4.2742

FDST 9.7210 7.0699 5.9519 4.3172 4.2354 4.2671

Current study Talha and Singh [41] 19.9367 13.7978 12.0812 9.7440 9.2841 8.7107 2

SOLID185 18.7497 13.0398 11.4074 9.2109 8.7742 8.2224

SHELL181 18.6331 13.4962 11.3849 8.3029 8.1487 8.1437

FDST 18.6335 13.5221 11.3837 8.2573 8.1008 8.1418

Current study Talha and Singh [41] 19.9367 13.7978 12.0812 9.7440 9.2841 8.7107 3

SOLID185 18.7497 13.0398 11.4074 9.2109 8.7742 8.2224

SHELL181 18.6331 13.4962 11.3849 8.3029 8.1487 8.1437

FDST 18.6335 13.5221 11.3837 8.2573 8.1008 8.1418

Current study Talha and Singh [41] 28.1367 19.4845 17.0625 13.7350 13.0873 12.2919 4

SOLID185 26.3634 18.3247 16.0204 12.8993 12.2873 11.5297

SHELL181 26.1717 18.9414 15.9689 11.6299 11.4128 11.4058

FDST 26.0777 18.8973 15.9089 8.2573 11.3210 11.3609

Table 4 Properties of the constituents of the functionally graded

material [51]

Material

Properties

E (GPa) q (Kg/m3) m

Stainless steel (SUS304) 201.04 8166 0.28

Silicon nitride (Si3N4) 348.43 2370 0.28
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Finite Element Model Using ANSYS

The dynamic analysis of intact and cracked FGM plates

was performed using ANSYS software. The plate’s

geometry was created using the Design Modeler module

provided in the ANSYS Workbench. Parameters under

study, such as plate dimensions, crack length, crack loca-

tion, and crack orientation, were implemented into the

geometry as variables to control them through the Work-

bench’s parametric table. Here, the regular shape of the

intact plate efficiently permits filling the shape with eight-

noded hexahedra regular solid elements (Solid 185); see

Fig. 4a.

The functionally graded material properties were

implemented in the model by inserting APDL commands

that control the individual element material properties into

Workbench‘s modal module. It is worth emphasizing that

FGM properties are a function of the volume fraction Vc,

which is a function of the coordinates x; y; and z; see Eq. 1.

The APDL code evaluates Vc at the coordinates of the

centroid of each element. As a result, regular-shaped prism

and hexahedral elements are used, which ensure uniform

distribution of FGM properties. The FGM distribution in

each direction could be manipulated by controlling the

elements’ size in x; y; z-directions. The APDL coding steps

of the finite elements’ selection and assignment of the

Fig. 9 The effect of varying the material properties (elastic modulus

(E) and the density (q)) based on the variation of the gradient index in

the x-direction nxð Þ and the z-direction nzð Þ on the dimensionless

frequency XFGMð Þ is represented by black lines in figures (a) and (b),
respectively. Also, the effect of changing each of the elastic modulus

(E) and the density (q) properties separately on the frequency is

presented in different colors in each figure. The plate under study is

an intact, simply supported plate
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corresponding material properties based on each element’s

coordinates are illustrated in Fig.-17 in Appendix 1.

As for the case of the cracked plate, a plate geometry

consisting of two parts, upper and lower, with a separating

surface in between was created. Each part is divided into

three zones. Then, the crack is defined by applying a

‘‘bonded contact’’ between the bodies of the outer zones

leaving the middle contact surface free, see Fig. 4b and c.

The crack length c is controlled by changing the bonded

surfaces’ size. However, changing the crack geometry or

orientation can cause disorder to the elements in the

cracked plate model resulting in tetrahedron and irregular

hexahedra elements. This disorder leads to nonuniform

distribution of functionally graded material properties,

which is undesirable.

Ensuring a uniform distribution of properties of the

cracked plate is more challenging than the intact case. This

requires splitting bodies into smaller volumes that can be

meshed into regular-shaped elements. Then applying mesh

sizing controls to body edges to force generating hex and

wedge elements. Clearly, accomplishing this task manually

for different cases of crack length and orientation is a

tedious process. Therefore, the process is coded using

Workbench’s scripting to automatically create the required

‘‘named selections’’ required to group the edges to be

meshed and to group the surfaces to apply contact.

Experimental Work

The aim of the experimental work is to validate the finite

element model of cracked plate. However, the experi-

mental work was limited to isotropic materials only.

Fig. 10 The effect of changing the gradient index (n) on the

dimensionless frequency ratio XFGM

XIso

� 	
of an intact plate. The

figures (a, b) represent the first and second plate natural frequency,

respectively. In each figure, the frequency ratio is plotted in three

different colors representing unidirectional, two-directional, and

three-directional variation of the material properties (Color figure

online)
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Samples

Square samples made of commercial carbon steel are used

in the experimental work. The dimensions of the plate in

the x-direction and y-direction are a ¼ b ¼ 200� 0:5 mm.

The thickness of the samples is h ¼ 2� 0:01 mm. The

density ðqÞ was experimentally evaluated by weighing the

sample and dividing by its volume. The density of the steel

plate sample is q = 7600 ± 77 kg/m3. The elastic modulus

ðEÞ is also experimentally evaluated as E ¼ 201.60 ± 4.7

GPa. This is done by calculating the first six natural fre-

quencies at a range of elastic moduli (185 GPa–210 GPa)

using modal analysis. These frequency values were used to

draw a graph resulting in a straight line corresponding to

each frequency; see Fig. 5. The equations of these lines

relate the natural frequency with the modulus of elasticity.

By substituting an experimentally obtained natural fre-

quency in this equation, the experimental elastic modulus

can be acquired.

Fig. 11 Histogram of variance-based uncertainty analysis using Monte Carlo method. The input parameters are the variation of plate length,

width, and thickness by approximately 1%
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Cracked samples with different crack length ratios ðc=aÞ
were prepared using an angle grinder. A suitable cutting

wheel with minimal thickness was considered to control

the length and the thickness of the crack. The resulted

crack tips thickness did not exceed 2 mm. Uncracked and

cracked samples with crack length ratios (c=a) of 0.4, 0.55,

0.7, and 0.85 were used in this experimental work. Thirteen

points were marked on the surface of each plate sample at

equal distances to specify both the locations of mounting

the accelerometer and impacting the plate with the ham-

mer. Intact and cracked plate samples are shown in Fig. 6.

Test Rig

A schematic diagram, shown in Fig. 7, describes the

instruments used for acquiring the natural frequency of an

all-free edge plate. The plate is placed on the vehicle tire

representing a 4-edge free support for the plate. A piezo-

electric accelerometer (Model B&K 4517) is mounted on

the plate by the means of adhesives. The weight of the

accelerometer is as light as 0.65 grams, so it does not affect

the mass of the plate. An impact hammer (model B&K

8202) is used to impact the plate and excite the free

vibration modes. This vibration signal is then captured

using the prementioned accelerometer. The data acquisi-

tion system, which is consisted of an analog input module

NI-9231 mounted on a CompactRIO NI-9063, receives the

signal from the accelerometer. The CompactRIO is con-

nected to a laptop with a LABVIEW software. A code was

constructed to provide a user interface to monitor the

acquired analog measurement data and control the input

measurement parameters. The measured signals were

recorded using a sampling rate of 5.120 kS/sec during a

sampling time of 10 Sec. The considered sampling rate

could capture natural frequencies up to 2560 Hz, which is

more than enough for capturing the first four frequencies of

the plate samples, based on the sampling theorem [60].

During each measurement process, the accelerometer was

placed at minimum of two points to ensure capturing as

many vibration modes as possible. This is because placing

the accelerometer over an expected vibration node location

would cause this vibration mode to be missed. For each

accelerometer location, the plate was hit three times; then,

the obtained natural frequencies were averaged. The mea-

surement data were saved in TDMS format files. The

signals obtained from the frequency measurements are

analyzed using NI-DIAdem software which perform fast

Fourier transform (FFT) on the signal.

Results

The results section consists of two subsections. The first

subsection contains the validation of the FEM results of

isotropic plates with experimentally obtained results. Also,

the validation of the numerical formulation developed in

this study with the previous literature is shown. The second

subsection discusses the new results of FGM cracked plates

using finite element models solved by ANSYS software.

In the results section, the obtained natural frequencies

are presented as dimensionless parameters that can be

calculated as follows:

XFGM ¼ x̂
b2

h

ffiffiffiffiffi
qc
Ec

r
; ðEq 13Þ

XIso ¼ x̂ a2
ffiffiffiffiffiffiffiffiffiffi
qIsoh
DIso

r

; where DIso ¼
EIsoh

3

12 1� m2Isoð Þ : ðEq 14Þ

In the previous equations, XFGM and XIso are the

dimensionless frequency of the FGM and the isotropic

plate, respectively. DIso is the flexural rigidity of an

isotropic plate.EIso; qIso; and mIso are the modulus of

elasticity, density, and Poisson’s ratio of an isotropic

plate. Also, the dimensionless quantities of n ¼ c
a and dc ¼

d
b are employed in the present work, where n is the

dimensionless crack length ratio, dc is the dimensionless

crack position ratio, c is the crack length, and d is the

vertical distance from the horizontal edge of the plate to the

crack location. The dimensions d and c are illustrated in

Fig. 8a, b, and c.

bFig. 12 The variation of the dimensionless frequency XFGMð Þ with

respect to the crack length ratio (n) of a simply supported FGM plate.

The through crack is horizontal and at the center of the plate. The first

and second columns represent the first and second natural frequencies,

respectively. The frequency curves in figures (a–f) are obtained using

unidirectional, two-directional, and three-directional variation of the

gradient index nð Þ. A different value of nð Þ is used for each row of

figures
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Validation of the Present Model

To verify the accuracy of the present FEM model, the

validation process is conducted in two steps. First, the

obtained natural frequencies from the finite elements’

model are compared to the experimentally measured fre-

quencies. This is shown in Table 1. The frequencies are

presented as nondimensional frequency parameters XIso.

This is done for different crack length ratios ðnÞ of [0. 25,
0.4, 0.55, 0.70, 0.85]. The properties and dimensions of the

isotropic plate under study are mentioned in samples. The

FEM analysis in ANSYS is done using solid elements

SOLID185 and shell elements SHELL181. It can be noted

that the difference between the results from SOLID185 and

SHELL181 is negligible as the plate is thin. There is a very

good agreement between the experimental and FEM

results.

In addition to the step-one validation with the experi-

mental analysis, the model is validated with previous work

in the literature in step two. The first four natural fre-

quencies of a FGM plate are compared with the results

from Talha and Singh [41] in Tables 2 and 3. The plate has

an aspect ratio a
h of 10 and is constrained with a simply

supported and clamped boundary condition in Tables 2 and

3, respectively. The properties are varying in the z-direc-

tion only for values of nz = [0, 0.5, 1.0, 5.0, 10]. The natural

frequencies are calculated using ANSYS and employing

SOLID185 and SHELL181 elements. Also, MATLAB

results by applying the FSDT steps mentioned in section

‘‘Theoretical Model and Experimental Analysis’’ are

included in the table. The number of the used solid ele-

ments is 16000, while the number of shell elements is only

1600.

Vibration of the Cracked FGM Plate

The free vibration of intact and cracked FGM (SUS304/

Si3N4) plates is investigated in this section. In the first

subsection, the effect of changing the material properties’

direction on intact, simply supported FGM plates is stud-

ied. Then, in the following subsections, different cases of

through-cracked FGM plates, shown in Fig. 8, are dis-

cussed. The plate under study is square and thick plate

where a ¼ b ¼ 100 and h ¼ 10. The properties of the

ceramic and metal constituents are mentioned in Table 4.

Effect of Applying Unidirectional and Multidirectional

Functionally Graded Material Properties on an Intact

Plate

The effect of the unidirectional variation, see Fig. 2, of the

gradient index (n) on the dimensionless frequency of the

FGM plate (XFGM), is shown in Fig. 9. The plate under

study is an intact, thick, simply supported (SSSS) square

plate. The properties of material, obtained from Eq. 2, are

based on the variation of the gradient index along the x-

direction ðnxÞ, shown in Fig. 9a. On the other hand, the

properties are based on variation of the gradient along the

z-direction ðnzÞ in Fig. 9b. The effect of changing the

elastic modulus EFGMð Þ and the density qFGMð Þ separately
on the dimensionless frequency XFGMð Þ is also demon-

strated in the figure for both the x- and z-directions. The

frequency is calculated based on changing the elastic

modulus while keeping the density constant and equal to

the metal density ðqmÞ once, then based on changing the

density while fixing the elastic modulus to the metal’s

modulus ðEmÞ.
It is observed from Fig. 9 that the dimensionless fre-

quency XFGMð Þ generally decreases as the gradient indices

nx and nzð Þ increase. This is due to the decrease of the

ceramic’s volume as n increases which results in reduction

of the plate’s stiffness. Furthermore, the decrease in fre-

quency is sharp for values of nx and nzð Þ\3, while it is

insignificant for higher values of nx and nzð Þ. Also, the

density (q) contribution to the dimensionless frequency at

low gradient indices is higher than that of the elastic

modulus (E). However, the difference between the fre-

quencies in the two cases decreases as the gradient index

bFig. 13 The first natural frequency, presented as the cracked

dimensionless frequency ratio Xcr

Xint

� 	
, with respect to the crack

orientation (h) of a simply supported FGM plate . The through crack

has a crack length ratio (n) of 0.5 and at an angle h with the x-axis

direction. The first and second columns represent the unidirectional

and multidirectional variation of the gradient index nð Þ, respectively.
A different value of nð Þ is used for each row of figures
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increases until the contribution effect is reversed

eventually.

A comparison between the frequency ratios XFGM

XIso

� 	

resulting from the unidirectional, two-directional, and

three-directional variation of the gradient index nð Þ is

illustrated in Fig. 10. The unidirectional variation of the

gradient index is along the x-direction ðnxÞ and the z-di-

rection ðnzÞ separately. The two-directional variation of the

gradient index is along the plate’s in-plane directions

ðnx; nyÞ and the x� z plane of the plate ðnx; nzÞ. Finally, the
three-directional variation of the gradient index is along all

the three directions ðnx; ny; nzÞ. The first- and second-plate

natural frequencies for each variation direction of the

gradient index are shown in Fig. 10a and b, respectively.

One can conclude from the figure that for all values of nð Þ
the unidirectional variation of material properties resulted

in the highest natural frequency. In contrast, the lowest

natural frequency was caused by the three-directional

variation.

To deal with uncertainties in the input parameters, a

variance-based uncertainty analysis using the Monte Carlo

method was performed in the numerical simulations, see

Fig. 11. The input parameters considered were the plate’s

length, width, and thickness. These parameters can exhibit

variations due to manufacturing tolerances in the range of

1%. There are a large number of random samples for the

input parameters by sampling from their normal probability

distributions. For the set of input samples, numerical sim-

ulations were conducted to obtain the corresponding plate

natural frequencies as outputs. It is found that the plate’s

natural frequency remained approximately unchanged. The

variance-based uncertainty analysis allows gaining insights

into the sensitivity of the output to variations in each input

parameter.

Effect of Crack Length on Unidirectional

and Multidirectional Functionally Graded

Material-Cracked Plate

The influence of the crack length ratio (n) on the dimen-

sionless frequency (XFGM) using different values of

gradient index nð Þ is shown in Fig. 12. The used values of

the crack length ratio (n) are from 0.10 to 0.90 with a step

of 0.10. The first and second columns represent the first and

second natural frequencies, respectively. The frequency

curves in each row are based on different values of the

gradient index, namely n ¼ 0:5; 3:0; 5:0 in an ascending

arrangement. For each value of n, frequency is calculated

based on unidirectional, two-directional, and three-direc-

tional variation of the gradient index. It can be seen in the

figure that the increase in the crack length results in

reducing the stiffness of the plate, thus decreasing the

natural frequency in all cases as expected. However, the

rate of decreasing is the dimensionless natural frequency

was higher in the second mode compared with that of the

first mode.

Effect of Crack Orientation on Unidirectional

and Multidirectional Functionally Graded

Material-Cracked Plate

The influence of changing the orientation of the crack on

the first and third natural frequencies of a (SSSS) plate is

illustrated in Figs. 13 and 14, respectively. The fig-

ures show the natural frequency, presented as the cracked

dimensionless frequency ratio Xcr

Xint

� 	
, with respect to the

crack orientation hð Þ of a simply supported FGM plate.

Both the dimensionless frequency of the cracked FGM

Xcrð Þ and of the intact FGM plate Xintð Þ can be calculated

from Eq. 13. The through crack has a crack length ratio (n)
of 0.5 and at an angle h with the x-axis direction. The first

and second columns represent the unidirectional and mul-

tidirectional variation of the gradient index n, respectively.

A different value of n is used for each row of figures. The

natural frequencies are presented as cracked dimensionless

frequency ratio Xcr

Xint

� 	
on the y-axis. The through crack is

inclined, and its center is aligned with the plate’s center.

Crack orientation angles (h) of (0, 10, 20, 30, 40, 45, 50,
60, 70, 80, 90) are used where the angle is measured from

the x-axis, see Fig. 8b. The first column of figures is

obtained using unidirectional variation of the gradient

index, while the second column is obtained using two-di-

rectional and three-directional variation of the gradient

index. The gradient index for each row of figures is con-

stant and increases while moving downward. Gradient

index values of n ¼ 0:5; 3:0 and 5:0 are used in this case

study. It can be noted that the lowest frequency occurs at

h ¼ 45� in the case of the first natural frequency. On the

other hand, the lowest frequencies in the case of the third

natural frequency differ depending on the direction of the

gradient index variation and its value. It can also be real-

ized that the relatively lowest first frequency was in case of

nz only as shown in Fig 13. However, the situation is

bFig. 14 The third natural frequency, presented as the cracked

dimensionless frequency ratio Xcr

Xint

� 	
, with respect to the crack

orientation (h) of a simply supported FGM plate. The through crack

has a crack length ratio (n) of 0.5 and at an angle h with the x-axis
direction. The first and second columns represent the unidirectional

and unidirectional variation of the gradient index nð Þ, respectively. A
different value of nð Þ is used for each row of figures
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completely reversed in the third mode as shown in Fig. 14.

Also, the case nx ¼ ny shows the highest first mode in

frequency compared with the other multidirectional varia-

tion. Again, the situation differs in the third mode. This

may be explained by the fact that the different frequencies

have different mode shapes which interacts with the dis-

tribution of the FGM and the crack orientation as well.

Effect of Crack Position on Unidirectional

and Multidirectional Functionally Graded

Material-Cracked Plate

The effect of changing the dimensionless crack position

ratio (dc) on the cracked dimensionless frequency ratio (Xcr

XIn
)

of a simply supported and a cantilever square plate is

discussed in Figs. 15 and 16, respectively. The crack length

ratio (n) of the crack in the plate model equals 0.5. The

used values of the crack length ratio (dc) are from 0.10 to

0.90 with a step of 0.10. It is noted from Fig. 15 that the

first natural frequency is at its minimum value when the

crack is at the center of the simply supported plate.

The value of the frequency increases as the crack moves

toward the edges of the plate. In the case of a cantilever

plate Fig. 16, the lowest frequency is obtained when the

crack is closest to the fixed edge. Furthermore, the effect of

two- and three-directional variation of the gradient index is

insignificant, and the frequency obtained is almost

identical.

Finally, it is crucial to acknowledge the limitations of

the present analysis after presenting the model results.

Firstly, the experimental results are limited to isotropic

materials. Secondly, the numerical code utilized in this

study is specifically designed for intact materials and does

not incorporate the effects of cracks. Lastly, the results

obtained from the ANSYS code encompass all the physics

considered in the present analysis, indicating that the

chosen software adequately captures the relevant phe-

nomena for the studied problem.

Conclusion

In this paper, the free vibration of functionally graded

intact and cracked plates is investigated. The analysis is

based on numerical and experimental analysis. The

experimental work is used to identify the plate material

properties and to validate the results of the numerical

model in the case of isotropic cracked plate. The numerical

model is based on finite element analysis using both

MATLAB code for uncracked samples and ANSYS soft-

ware package for the case of cracked FGM. A code is

prepared to model two- and three-directional material

distribution in plates in ANSYS mechanical APDL. This

enables a novel study of the combined effects resulting

from variations in FGM material properties, crack length,

crack orientation, and crack location.

The experimental results verified the finite element

model in the case of isotropic materials. The variance-

based uncertainty analysis using the Monte Carlo method

bFig. 15 The first natural frequency of a simply supported FGM plate

with respect to different crack position ratios (dc). The frequency is

represented as the dimensionless frequency ratio (Xcr

Xint
). The frequency

curves in each figure (a–c) are obtained using unidirectional and two-

directional variation of gradient index with values corresponding to

0.5, 3.0, and 5.0, respectively
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results indicates the possible manufacturing imperfection

has minor effect on the plate dynamics. Also, the results

show the effect of changing the FGM properties in the

three directions on the intact plates. It was shown that the

use of FGM in the three directions reveals the lowest

natural frequency in the first and second mode as shown in

Fig. 10. The results show also that the FGM gradient

affects the plate natural frequencies greatly when n\3.

Higher than that the FGM gradient approaches to have no

effect on both cracked and intact plates. The results also

show the effect of crack location on the plated depends on

the boundary condition of plates. Finally, the results of the

present manuscript can guide to the design based on FGM

plates, especially when cracks exist.
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Appendix

See Fig. 17.

bFig. 16 The first natural frequency of a cantilever FGM plate with

respect to different crack position ratios (dc). The frequency is

represented as the dimensionless frequency ratio (Xcr

Xint
). The frequency

curves in each figure (a–c) are obtained using unidirectional and two-

directional variation of gradient index with values corresponding to

0.5, 3.0, 5.0, respectively

Fig. 17 A flow chart explaining the APDL coding procedure of

selecting the elements and assigning the corresponding material

properties
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