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Abstract ISO 26262, titled Road Vehicles–Functional

Safety, is the new automotive functional safety standard for

passenger vehicle industry. In order to accomplish the goal

of designing and developing dependable automotive sys-

tems, ISO 26262 uses the concept of Automotive Safety

Integrity Levels (ASILs), the adaptation of Safety Integrity

Levels. ASILs are allocated to the components and sub-

systems that can cause system failure and malfunctions that

lead to hazards. ASILs allocation is a hard problem consists

of finding the optimal allocation of safety levels to the

system architecture which must guarantee that the highest

safety requirements are met while development cost of the

automotive system is kept minimum. There were many

successful attempts to solve this problem using different

techniques. However, it is worth pointing out that there is

an absence of a review that provides an in-depth study of

all the existing methods and highlights their merits and

demerits. This paper presents an overview of different

approaches that were used to solve ASILs allocation

problem. The review provides an overview of safety

requirements including the related standards followed by a

study of the resolution methods of the existing approaches.

The study of each approach provides a detailed explanation

of the used methodology and a discussion of its strength

and weaknesses including the main open challenges.

Keywords ISO 26262 � Optimization � Exact solver �
ASIL allocation � Automotive system � Safety requirement �
Functional safety

Introduction

Due to the rapid advancement of technologies, an

increasing number of electric and electronic devices are

used every day in people’s lives, in home, office and even

in public spaces. Some of these devices can represent a

danger or a threat to human health and environment by

causing harm. The latter is a physical injury or damage to

the health of persons [1]. Here is where the focus on safety

becomes a primary necessity. IEC 61508 [2] is an inter-

national standard for the functional safety of electrical,

electronic, and programmable safety-related systems (E/E/

PE). Safety-related systems are systems that perform a

function or a set of functions that ensure that risks are kept

at an acceptable level [3]. IEC 61508’s role is to minimize

the likelihood of failure of these systems by ensuring that

they provide the required safety integrity levels (SILs).

SILs are presented as five safety levels, which are used to

make sure that E/E/PE systems do meet the intended safety

requirements against the highest risks.

It is noticed in the last two decades that the number of

road accidents has increased significantly and as an out-

come, a massive number of casualties have occurred.

According to the global status report on road safety

released by the world health organization, over 1.2 million

people die each year on the world’s roads and between 20

and 50 million suffer non-fatal injuries [4]. Reliability of

automotive devices and systems is one of the major factors

that have a direct effect on the safety of road users;
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therefore, standards like ISO 26262 have come to light.

ISO 26262 is an adaptation of the IEC 61508 standard for

the automotive industry. This new automotive functional

safety standard defines a safety life cycle applied to auto-

motive electronics, where designs must comply with the

standard by going through an overall safety process [5].

ISO 26262 uses the concept of Automotive Safety Integrity

Levels (ASILs) which are an adaptation of SILs in the

automotive industry.

ASILs are the key component of ISO 26262, used to

represent the severity of safety requirements. They are five

levels (QM, A, B, C, D) from the least strict ASIL (A) to

the strictest ASIL (D), where QM means no safety

requirements. Each level has a cost associated with it,

which refers to the used cost function. According to ISO

26262’s algebra, ASILs are assigned integer values as:

ASIL(QM) = 0, ASIL(A) = 1, ASIL(B) = 2, ASIL(C) = 3,

and ASIL(D) = 4. ASILs are allocated to hazardous com-

ponents based on the severity of the hazard caused by the

failure of that component. ASILs decomposition concept

allows the ASIL to be decomposed over components that

together provide the same hazard. ASILs allocation is a

hard, complex problem of finding the most appropriate

allocation of safety requirements to the components of the

automotive system. An appropriate ASILs allocation to

components and subsystems must guarantee the fulfillment

of least-risk safety requirement with the least development

cost.

Due to the criticality of the ASILs allocation problem

and its crucial importance in any automotive system’s

safety, an appropriate allocation must be found. To attain

this objective, exact solution techniques and optimization

methods are used. Although these two methods aim to

solve ASILs allocation problem, generally optimization

solvers converge faster by finding at least a near-optimal

solution; however, no guarantee is given that this solution

will be found. On the other hand, exact solvers may take

extra time, but they can find all exact optimal solutions.

In this review, after presenting an overview of the

background of safety requirements including safety stan-

dards, an in-depth study of the existing approaches for

ASILs allocation problem is presented. Here, different

approaches are categorized into exact and optimization

methods and described while identifying their strength and

weaknesses. Finally, future outlook for ASILs allocation

approaches is provided.

The rest of the paper is organized as follows: In the next

section, the background study of safety requirements is

introduced. In the third section, the ASILs allocation

problem is described. ‘‘ASILs Allocation Algorithms’’

section reviews both exact and optimization approaches

used for solving ASILs allocation problem. ‘‘Discussion

and Future Outlook’’ section presents a discussion and

summarizes the open challenges for the ASILs allocation

approaches. Finally, in ‘‘Conclusion’’ section, concluding

remarks are presented.

Safety Requirements: A Background Study

IEC 61508

IEC stands for the International Electrotechnical Com-

mission, which is an international organization for

standardization in the electrical and electronic fields and

publishing international standards in addition to other

activities. IEC 61508 is an international standard for the

functional safety of electrical, electronic, and pro-

grammable electronic (E/E/PE) equipment [2]. It sets out

the requirements to make sure that these systems provide a

functional safety, which is defined as the absence of

unreasonable risk due to hazards caused by the malfunc-

tioning behavior of E/E/EP systems.

ISO 26262

ISO 26262 is the new automotive functional safety stan-

dard for passenger vehicle industry [6], titled Road

Vehicles–Functional Safety applied to safety-related sys-

tems. It is considered as an adaptation of the IEC 61508 for

the automotive industry. It applies to the vehicles which

carry passengers or goods, with a number of wheels that

equal or greater than 4.

ISO 26262 standard is divided into ten parts [1]:

• Part 1—Vocabulary the terms, definitions, and

abbreviations.

• Part 2—Management of Functional Safety required

management of functional safety in automotive

industry.

• Part 3—Concept Phase the requirements for risk

analysis and risk assessment.

• Part 4—Product Development at the System Level the

requirements for product development at the system

level.

• Part 5—Product Development at the Hardware Level

the requirements for product development at the

hardware level.

• Part 6—Product Development at the Software Level

the requirements for product development at the

software level.

• Part 7—Production and Operation the requirements

for production, operation, and decommissioning

services.

• Part 8—Support Processes the requirements for sup-

port processes.
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• Part 9—Automotive Safety Integrity Level (ASIL)-

Oriented and Safety-Oriented Analysis the require-

ments for ASIL-oriented analysis and defines the ASIL

decomposition concept.

• Part 10—Guideline on ISO 26262 overview of ISO

26262 and explanations of the other parts of the

standard.

ISO 26262 represents the safety-critical systems-specific

unifying standardization in the automotive industry to

provide systems that must comply with the standard by

going through an overall safety process. In order to develop

safety-compliant systems, ISO 26262 imposes a functional

safety cycle to verify the compliance of a product from its

conception to decommission. Decommissioning is the

phase to mark the end of the life cycle of a product. The

end of life cycle can be determined from the life expec-

tancy of the products that is built into their respective test

durability cycles.

Unlike IEC 61508 that measures the reliability of safety

functions and uses the maximum target probability, ISO

26262 is based on the violation of safety goals and provides

requirements to achieve an acceptable level of risk. It uses

the concept of ASILs, which are the key component for

ISO 26262 to classify the strictness of safety requirement

with respect to the software and systematic failure. ASILs

are fully dedicated to the safety of the driver and road users

and take no consideration of the system technologies.

In order to determine which ASIL to assign to a safety

goal, the product goes through a safety process according

to ISO 26262 to reduce the risk that can cause any harm

or threat to the driver or the road users. The process starts

by identifying hazards that could possibly be produced by

the malfunctions of the system. After identifying hazards,

the associated hazardous events are then identified. After

selecting the failure modes of the system, an ASIL will be

associated with the related safety requirement based on

the risk posed by that failure mode. The safety goal is

determined by a combination that gathers the probability

of exposure, the controllability by the driver, and the

severity of the failure. Once the risk is estimated,

according to the safety goal, an ASIL to be assigned is

determined.

Safety Integrity Levels

Safety Integrity Levels (SILs) are used to classify the

strictness of safety requirement in safety-critical systems.

SILs were originally described in UK Health Safety

Executive guidelines [7]. They represent the levels of

safety assigned to a system or a subsystem in order to avoid

a systematic failure. SILs were adopted by many safety

standards, including IEC 61508 which defines five levels of

SILs from the least strict level SIL1 to the most strict SIL4

while SIL0 level means no special safety requirements.

SILs are assigned to system functions, subsequently to

their components in order to avoid the systematic failure

and the unacceptable risk according to a process defined in

several standards. This process performs the hazard esti-

mation and risk analysis, to eventually associate the

appropriate SIL that reduces the hazard with the desired

level. SILs play a dual role in the development and veri-

fication of systems [7] by allowing the top-down allocation

of safety requirements to subsystems and components

according to their criticality. It also allows the bottom-up

verification in order to ensure that the safety requirements

have been met. SILs are used to allocate safety require-

ments to hazardous components of critical systems to make

sure that their design is composed of safety-critical func-

tions that were assigned with an effective SIL without

necessarily forcing all components of those functions to be

associated with the maximum SIL.

SILs are defined as a manual and unaided process and

can be determined based on qualitative and quantitative

analysis. For example, Sallak et al. [8], Beugin et al. [9],

Zhang et al. [10], and Lee et al. [11] considered deter-

mining SILs either qualitatively or quantitatively. SILs

allocation process was first systematized and automated in

[7]. This allows finding the feasible optimal SILs alloca-

tions where the systems architectures are complex because

it delivers several safety-critical functions. This was

achieved using the fault tree analysis [12, 13] through HiP-

HOPS (Hierarchically Performed Hazard Origin and

Propagation Studies) [14–16]. HiP-HOPS is a state-of-the-

art model-based safety analysis (MBSA) [17–19] technique

compliant with the algebra defined by the functional safety

standard ISO 26262. The technique is supported by an

automated safety and reliability analysis tool that provides

an algorithm to automate the whole process in such com-

plex architectures, by doing so, it may be possible to find

the ASILs allocation in such systems.

ASILs Allocation Problem

Description

As previously mentioned, ASILs are classification levels

used to describe the stringency of safety requirements to be

met in a systems’ development life cycle, while taking in

consideration the systemic failure. ASILs are five levels:

QM, A, B, C, and D. Each ASIL is assigned an integer

value: ASIL(QM) = 0, ASIL(A) = 1, ASIL(B) = 2,

ASIL(C) = 3, and ASIL(D) = 4. ASIL (D) imposes the

highest safety requirement, ASIL (A) imposes the least

strict safely requirements, and ASIL (QM) implies no
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special safety requirement. Each ASIL has a heuristic cost

value defined within a scale which could be linear, loga-

rithmic, or exponential.

The failure of one or more components in the system

may cause a hazard. Severity, controllability, and exposure

of each hazard are used as a base, on which the hazard is

grouped into a given category. Each category is assigned

an ASIL. For each assigned ASIL, a safety goal is imposed.

The concept of cut sets is used when the combination of

failure modes of different components can lead to a hazard.

A cut set is a combination of events that can cause a system

failure. In such a case, the ASIL allocated to each of the

elements of a cut set should satisfy the ASIL allocated to

the cut set itself. Assigning the same ASIL as that of the cut

set to each element of a cut set would be prohibitively

expensive, which further lead to increase in the develop-

ment cost of the system considerably. In order to overcome

this obstacle and make sure that safety requirements are

met, the ASILs decomposition algebra proposed in ISO

26262 is taken into account. The algebra specifies that if

the failure of a set of components caused a given hazard,

then the ASIL assigned to the hazard is decomposed over

the set of components. As an example, consider a system

with Cn components. The failure of two components C1

and C2 caused a hazard of ASIL(D); then, this ASIL can be

decomposed over C1 and C2 as follows: ASIL(D) =

ASIL(B) ? ASIL(B), or ASIL(D) = ASIL(A) ? ASIL(C).

As formerly stated, ASILs decomposition and allocation

aim to ensure safety requirements fulfillment during the

development life cycle of the system on the one hand, and

reduce the development cost on the other hand. Thus,

finding an appropriate ASILs allocation and decomposition

is both critical and crucial tasks due to the huge size of

solutions search space. For example, NYTT60 is a steer-

by-wire system [20] having 8218 cut sets and 185 failure

modes, which results in a search space size of

2.04*10e219. Finding an optimal solution to the ASILs

allocation problem within such a huge search space is not

possible in a reasonable time. For this reason, ASILs

allocation gained its combinatorial nature and was classi-

fied as a hard problem.

ASILs Allocation Quality Measurement

ISO 26262 aims to produce and develop the most reliant

systems that provide the highest level of safety. Require-

ments are allocated iteratively to elements, components,

and subsystems. ASILs allocation falls under the influence

of the different requirements severities and cost develop-

ment. Therefore, for these reasons, ASIL allocation is not

just an optimization problem of simply assigning levels to

components. It is in fact a complex, critical, optimization

problem of finding the most appropriate ASILs allocation

that minimizes the cost while meeting the given safety

requirements. This allocation represents the optimal solu-

tion in the search space.

A feasible solution for ASILs allocation must fulfill the

safety requirements, meaning that it does not violate any

ASIL allocated to the safety goal of the corresponding

hazard. On the other hand, unfeasible solutions have at

least one failure mode that violates the given requirements.

The feasibility of each candidate solution is tested by using

the fault propagation information which is described as

minimal cut set (MCS) of the fault tree analysis (FTA).

MCS is extracted from fault trees and is defined as a

combination of system components’ failures that may lead

jointly to a hazard [21, 22]. The FTA identifies the func-

tions (components) over which an ASIL is decomposed and

allocated. These fault trees describe how the failure of a

system component can cause a hazard, which is assigned an

ASIL as well as a safety goal that is associated with it.

Allocated ASILs are implemented by independent com-

ponents where the failure of these components altogether

causes a safety goal violation. The top events in these fault

trees are the safety goals violations identified by the pre-

liminary hazard analysis.

A MCS may contain a single failure mode that can cause

the failure of the system directly or a combination of dif-

ferent failure modes that must fail together to cause the

failure of the functionality of the system. As it is defined in

the ISO 26262 algebra, the sum of ASILs allocated to each

event of a cut set is either equal or greater than the ASIL

allocated to the cut set. In order to determine the fitness of

each candidate solution, a cost function must be used, and

there is a group of cost heuristics which are presented in

Table 1.

The fitness of each candidate solution is simply calcu-

lated by summing up the cost of all ASILs assigned to the

failure modes. For example, if we have an automotive

system S containing five components {C1, C2, C3, C4, C5}

that might cause a hazard, a feasible candidate solution can

possibly be: {1, 3, 4, 2, 3} relating directly to {ASIL (A),

ASIL(C), ASIL(D), ASIL(B), ASIL (C)}. If we use a linear

cost function, the fitness of this particular solution would

be 130 because 10 ? 30 ? 40 ? 20 ? 30 = 130.

Since ASILs allocation is a hard and complex problem

with an enormous number of feasible solutions, it has been

Table 1 ASIL cost heuristics

Cost heuristics QM A B C D

Linear 0 10 20 30 40

Logarithmic 0 10 100 1000 10000

Experiential-I 0 10 20 40 50

Experiential-II 0 5 30 35 50
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at the core of interest of researchers. Over the years, several

techniques considering diverse methods have been devel-

oped to find an economic ASILs allocation. These

techniques are divided into two main categories: exact

techniques and optimization techniques.

ASILs Allocation Algorithms

Exact Approaches

Exact solvers aim to find the exact solution to a given

problem. There were some attempts to solve the ASILs

allocation problem using these solvers to find all exact

solutions. This section introduced the exact solvers that

were proposed and developed to solve ASILs allocation.

Exact Approach Using Three State-of-the-Art Solvers

Murashkin et el. [23] used three off-the-shelve solvers such

as CSP (Constraint Satisfaction Problem) [24], SMT (Sat-

isfiability Modulo Theories) [25], and ILP (Integer Linear

Programming) [26] to find the exact solution to the ASILs

allocation problem. More specifically, they used Choco

CSP [27], Z3 SMT [28], and CPLEX ILP [29] solvers.

Choco is a problem modeler for the constraint satis-

faction problem (CSP) and constraint programming (CP)

[30]. It is built and distributed under the BSD license

(Berkeley Software Distribution License). It is an efficient

and a readable constraint system for research, develop-

ment, and describing hard combinatorial problems in the

form of CSP and solving them. After modeling the problem

by defining the set of constraints that need to be met,

Choco solves it by using programming techniques. Z3 2.0.

SMT is an SAT (SATisfiability) standard of first-order

formulas with respect to other background theories such as

lists, arrays, bit vectors, and equality reasoning [25]. This

solver is a theorem prover developed by Microsoft

Research implemented in C??. Z3 integrates a modern

DPLL-based SAT solver, a core theory solver that handles

equalities and uninterpreted functions, satellite solvers, and

an E-matching abstract machine [31]. In the past, SMT

solvers have been successfully applied to the multi-objec-

tive optimization of software product lines [32, 33]. The

third exact solver is CPLEX ILP solver from IBM ILOG

CPLEX Optimization Studio 12.3, 64-bit edition [29].

Figure 1 shows the general workflow of finding exact

solutions to the ASILs allocation problem using each of

these solvers. As seen in the figure, the first step is to

encode the ASILs allocation problem for each of the sol-

vers so that the specification is compatible with the

reasoning mechanism of respective solver. This encoding

includes the representation of the key entities in the ASILs

allocation problem such as hazard, component failure

mode, minimal cut set, and readjustment of the cost func-

tions shown in Table 1 for the simplification of the solution

generation process. The detailed descriptions of how the

encoding was done for all the solvers are out of scope of

this paper. Interested readers are referred to [23].

Clafer 0.3.6 [34] was used to specify the ASILs allo-

cation problem for the Choco solver. Clafer is a lightweight

modeling language that aims at improving the under-

standing of the problem domain in the early stages of

software development determining the requirements with

fewer defects. Clafer’s optimization backend, based on

Choco CSP Solver 3.2 [27], was used to generate all the

optimal solutions. For Z3 SMT solver, the ASILs allocation

problem was directly encoded in a Python file that refer-

ences Python Z3 library. For CPLEX ILP solver, the

problem was encoded using a natural, algebraic linear

programming formulation, CPLEX LP file format (.lp

files).

The effectiveness and performance of this exact

approach using three different solvers were evaluated by

applying them on three variants of real-world Hybrid

Braking System Models (HBSMs) [35, 36]: HBSM 1,

HBSM 2, and HBSM 3. HBSM 1 has 31 MCSs and 24

failure modes; HBSM 2 has 94 MCSs and 60 failure

modes; and HBSM 3 has 11573 MCSs and 60 failure

modes. According to the workflow of Fig. 1, the encoding

of the ASILs allocation problem for each of the case study

and for each of the four cost functions was automated,

meaning that a total of 12 experimentation settings have

Fig. 1 Workflow for ASILs allocation using exact solvers
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been produced for each case study. Murashkin et el. [23]

performed all the experiments on an Ubuntu 12.04LTS 64-

bit machine with AMD Lisbon CPU 2.8 GHz processor

and 32 GB RAM. Based on their experiment, for HBSM 1

(smallest case study), all three solvers produced solutions

reasonably quickly. On the other hand, for the HBSM 2, the

Choco CSP did not perform well. More specifically, it was

not able to produce solutions in reasonable time for any

cost function except for the linear cost function. In the

contrary, Z3 SMT and CPLEX ILP solvers did actually

provide all optimal solutions for most instances in a quite

efficient time, but it was not clear which one outperformed

the other. However, for the HBSM 3, with the linear cost

function, Z3 SMT solver took 18.9 h while CPLEX ILP

took 13.3 days to complete.

System of Linear Equations

Dhouibi et al. [37] proposed a new approach to decompose

and allocate ASILs using a system of linear equations. This

latter is an ensemble or a collection of two or more linear

equations that has the same variables and has to be solved

all at once. A linear equation is defined as any equation that

has the standard form ax ¼ b, where a and b are real

numbers while x is the variable. It may have one or more

variables and is exponent free [38]. There are several

methods to solve a system of linear equations including

graphing method, substitution method, elimination method,

and Gaussian method [39]. The solution to a system of

linear equations implies assigning values to the variables in

a way that ensures that all equations are satisfied. In other

words, solving a system of linear equations means finding

the intersection points of the equations. It may admit one

solution, an infinite set of solutions, or zero solution

depending on the equations.

The proposed approach intends to interpret ASILs

decomposition and allocation problem as a system of linear

equations, where each equation is formed in the following

form.
X

ai � ASILFi ¼ ASILSR ðEq 1Þ

In the above equation, it is considered that ASIL allocated

to a function Fi (i.e., ASILFi) in the architecture refers to

the ASIL allocated to the safety requirement SR (i.e.,

ASILSR) provided by this function. The value of the

coefficient ai can be either 0 or 1, defining whether an MCS

contributes to the function loss. In other words, ai is 1 if the

reason of function loss is in the MCS and ai is 0 otherwise.

By applying this to all MCSs, a system of linear equa-

tions is created in the form of a matrix as seen below:

a11 � � � a1n

..

. . .
. ..

.

1m1 � � � amn

2
64

3
75�

ASILF1

..

.

ASILFn

2
64

3
75 ¼

ASILSR1

..

.

ASILSRn

2
64

3
75 ðEq 2Þ

Different possible ASIL allocations can be obtained by

evolving this system of equations for ASILF1 to ASILFn. In

some cases, the safety engineer may have some safety

preferences to apply, such as assigning a specific ASIL to a

certain component or manipulating the dependency of

system components. To do so, new constraints can be

added to the system to incorporate these preferences by

modifying the corresponding equations. In order to assign a

certain component a specific ASIL, its corresponding col-

umn is removed from the system of equations. The non-

dependency of two variables is handled by using the logic

operator ‘‘OR’’ to blend their corresponding operator in the

system. As previously stated, there are numerous ways to

solve a system of linear equations. To do so, the augmented

matrix of the system is taken into consideration. An aug-

mented matrix of a system of linear equations is a matrix

where its elements represent the coefficients of the vari-

ables in the system [40]. Since the augmented matrix

resulting from the system is not always square, many of the

solution methods become inapplicable. In [37], Dhouibi

et al. used the Row Reduced Echelon Form (RREF) to find

solutions to the system of equations. RREF of a matrix is

generally obtained by Gauss-Jordan elimination where the

rows are the target of the elimination. After performing a

sequence of operations, the result will be a system in the

row echelon form, which is a matrix with all zero rows

being at the bottom of the matrix [41]. The first number of

the nonzero row is in a column to the right of the first

number of the row above it, and all leading entries in the

row below are zeros. This helps to identify the pivot and

free variables that correspond to the columns with no

leading entry. After this, to find solution(s) to the ASILs

allocation problem, these variables are assigned with val-

ues within ASILs numerical values range {0, 1, 2, 3, 4}.

The values of the rest of the variables are then obtained

using back-substitution. The echelon form of the system of

equations reveals whether the system may admit a possible

ASILs allocation or not. Solvability is determined from the

system of equations; if it contains an equation in the form

of 0 = Cst [37], then the system is not solvable. In such

cases, the safety engineer can either review the system or

just ignore the preferences he made earlier. The approach

proposed by Dhouibi et al. [37] was used in [42] to assist

with the system design and architecture optimization by

considering safety and cost as constraints.
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Optimization Approaches

Exact solvers can produce an exact solution to a given

problem, but they may take too long to find a solution. In

order to improve the performance of the exact solvers in

terms of execution time, optimization approaches are pro-

posed. Optimization solvers are algorithms which produce

a near-optimal solution, it may not be the best, but it rep-

resents a feasible solution generated within a small amount

of time. The following sections present a set of optimiza-

tion algorithms used to solve ASILs allocation problem.

Integer Linear Programming Approach

The approach presented in [43] proposes a method that

allows an automatic allocation of ASILs to the system

components by considering the ASILs allocation problem

as an integer linear programming problem. First of all, an

integer linear programming optimization problem is the

type of problems that aims to either maximize or minimize

an objective function that is subject to given constraints.

All (or some) variables are tied up to integer values, and

both objective function and constraints are within a linear

scale [44]. The solution to this problem grants an optimal

ASILs allocation by optimizing an objective function that

takes into consideration a set of constraints. Constraints

used in the proposed approach are identified in the pre-

liminary hazard analysis, extracted from fault tree analysis

results, and defined by the safety engineer as safety

preferences.

This approach uses a modeling framework to create an

EAST-ADL (Electronic Architecture and Software Tech-

nology-Architecture Description language) [45] model,

which is a UML-based domain-specific language. EAST-

ADL is applied in the automotive software-based systems

domain. It aims to build a model to illustrate the automo-

tive electronic system using meta-models and natural

language [46]. This model is used to describe the system

components, the relations connecting them as well as their

reliance, which subsequently leads to model their failures.

Moreover, it allows modeling safety goals and assigning

ASILs to system components. The automatic generation of

fault trees from the EAST-ADL model is supported by the

previously mentioned framework. MCSs of the fault trees

are then used later as inputs by the framework’s solver

dedicated to solve the ILP problems.

A constraints solver designed to solve ILP problems is

provided by the framework to find an optimal ASILs

allocation. The idea is to extract MCSs from fault tree

analysis results, preliminary hazard analysis results and

take into consideration the engineer’s preferences. This

combination was used to build constraints that represent an

input to the solver. The solver considers two main types of

constraints on each system component’s ASIL. The first

constraint is related to the minimal cut sets. For each

minimal cut set j(j = 1…n) where j comprises of

fi i ¼ 1. . .mð Þ, a failure of a system component Ck that may

cause a safety goal violation, a constraint is defined. Each

constraint has a coefficient Cxy for each component, which

is set to 1 if fi belongs to the MCSj, otherwise its value is

set to 0. In case where the conjunction of components

failure may lead to a safety goal violation, their coefficients

are set to 1 and the rest of the coefficients are set to 0 in the

constraint. Finally, if a single component causes a safety

goal violation, its coefficient is set to 1, while the rest of the

coefficients in the corresponding constraint are set to 0.

The second type of constraint is related to the safety

engineer’s preferences. These preferences aim to reduce

the cost of the allocated ASILs. From this perspective, a

preferred ASIL is set to selected system components. For

each component Ck; if a preferred ASIL is defined to Ck, a

coefficient is defined and set to 1.

The constraint solver is then used to solve the ILP

problem to find the optimal allocation of ASILs to system

components. In this approach, the authors created a plug-in

for an open-source tool called Papyrus [47]. This plug-in

embeds a constraint solver with the Papyrus tool to support

the fault tree generation and automatic ASILs allocation.

Once the solver is executed, if a solution is found, it is

reported to the user. The solution is then examined by the

engineer who will choose the action to be taken according

to the quality of the solution. If it is adequate, the ASILs

allocation to the system components is initiated and the

EAST-ADL model is automatically changed in accordance

with the new solution, else, the safety engineer will have to

make some changes to his/her preferences and rerun the

solver.

Penalty-Based Genetic Algorithm

Originally developed by John Holland in 1975, genetic

algorithm (GA) is a search metaheuristic that mimics the

process of natural evolution. It uses the concepts of natural

selection and genetic inheritance [48]. The genetic algo-

rithm is applied to unconstrained combinatorial

optimization problems; therefore, the need for a method to

get a handle of the constraints has appeared. There are

several methods that can be used with GA to ensure the

non-violation of the constraints.

In [5], Parker et al. used a penalty-based genetic algo-

rithm [49] to solve ASILs allocation problem. The

flowchart of the approach is shown in Fig. 2. This approach

uses a fixed-length encoding where each ‘‘case’’ can hold a

value from 0 to 4 (QM to D, respectively). The fitness

function defined in this approach is equal to the sum of the
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ASILs costs of each candidate solution. Different scaling is

used to define the cost of each ASIL, as seen in Table 1.

In the first step, initial solutions for ASILs allocation

problem are generated randomly. In the second step,

genetic operators are applied to create new candidate

solutions by manipulating the existing ones which were

selected in the previous phase. Genetic operators are:

recombination and mutation. In the selection process, the

algorithm selects solutions from the population to perform

genetic operations. The idea is to apply ‘‘the survival of the

fittest’’ principle. First of all, candidate solutions are clas-

sified according to their penalized fitness. Selection is done

based on how close the candidate is to a randomly chosen

number between 1 and the square root of population size.

Mutation stochastically disorders the population by

changing the value of each ‘‘case’’ of the selected candidate

solution to a random number between 0 and 4 (ASIL

levels) according to an antecedently specified mutation

probability. Recombination creates new candidate solu-

tions by imitating biological reproduction. The

recombination operator used in [5] is the uniform cross-

over, which consists of creating offspring by randomly

selecting an encoding ‘‘case’’ from one of the parents

encoding.

Fig. 2 Flowchart of penalty-

based GA for ASILs allocation

problem
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In the next step, the newly generated solutions are added

to the existing population. Each of the solutions within this

population is then ranked by their fitness. During the

ranking process, candidate solutions with lower fitness

value are favored, unless they are considered as infeasible

solutions. The penalty method used in [5] is applied to

increase the penalty on infeasible candidate solutions, i.e.,

reduces the fitness of candidate solutions that violate the

constraints as the search progresses. A set of minimal cut

sets (MCSs) of the fault tree analysis using HIP-HOPS is

used to check for candidate solutions feasibility. The fea-

sibility of a solution is checked by comparing the total

value of the ASILs allocated to different MCSs with the

ASIL required for the hazard caused by these MCSs. The

violation of a requirement is represented by an ‘‘in-

valid_ASILs’’ counter that increases when sum of ASILs

assigned to different failure modes differs from the one

required to be met by the MCS containing these failure

modes. The ‘‘invalid_ASILs’’ counter values are measured

and added as a penalty to the ASIL cost of the candidate

solutions. A feasible solution will have an ‘‘invalid_ASIL’’

equal to zero and thus will receive no penalty. On the other

hand, an infeasible solution will have a nonzero count for

‘‘invalid_ASILs,’’ and the magnitude of the value will

depend on the number of safety requirements violated by

that particular solution. The higher the value of ‘‘in-

valid_ASILs,’’ the greater the penalty received by the

infeasible solution. In this way, if two solutions have equal

cost, the solution with higher penalty will deem as less fit

solution. However, a dynamic threshold is defined to allow

near-feasible solution a certain degree of constraint viola-

tions in the early search generations. As the search

progresses, the generated solutions are designed to face

harsher penalties by varying the threshold value. When all

the solutions are ranked by their fitness, the less fit solu-

tions are removed from the bottom, unless the population

size reaches the initial size. The whole process continues

until the stopping criteria are reached.

The effectiveness of this approach has been evaluated by

applying it to three different versions of the hybrid braking

systems mentioned in ‘‘Exact Approach Using Three State-

of-the-Art Solvers’’ section. The computational perfor-

mance was evaluated on a machine with Intel core i5

3.40 GHz processor with 8 GB RAM. For different cost

functions, the average run time to find solutions for each of

the systems is shown in Table 2.

Tabu Search Algorithm

Developed by Fred Glover in 1986, Tabu search (TS) is an

optimization metaheuristic that uses local search methods

to solve combinatorial problems [50]. TS starts from a

feasible solution and creates a neighborhood of the current

solution. Neighborhood solutions are evaluated, and only

one candidate solution is chosen on the basis of its fitness

to replace the current solution until a local optimum is

reached. In this case, a worse neighbor can be selected to

replace the current solution even if it does not improve the

current one. Tabu search has a so-called Tabu list, which

represents a short-term memory to store previously visited

solutions; the list is updated whenever a new solution is

found. This way search would not return to recent moves.

The search stops when a termination criterion is met.

Tabu search was used in [6] for automatic decomposi-

tion of safety integrity levels based on the work presented

in [51] by employing the Steepest Descent Mildest Ascent

(SDMA) method. The original version of the method fol-

lows Steepest Ascent Mildest Decent (SAMD) [52], i.e.,

the steepest ascent until a local maximum is reached and

then it uses the mildest descent to escape from it. Since the

original method is meant for maximization problems,

SDMA is developed as an adaptation to the SAMD to

minimize ASILs cost.

The algorithm starts with a number of iterations p from a

feasible solution. Using the steepest descent decrement, the

ASIL of the failure mode that results in the highest

decrease of the cost of the system decremented iteratively.

This process continues until it leads to the ASIL decom-

position rules violation. This situation implies that a

minimum has been reached and the algorithm uses the

mildest ascent to avoid being trapped in the local minima.

A variable fi is set to be equal to p and decrements when

every iteration is complete. fi prohibits the search from

deceasing the ASIL of a failure mode i after an ascent

move is performed. Another variable f
0
i is set to prohibit the

increase of ASIL of failure mode i after a descent move is

performed. The prohibition is limited within a number of

iterations p
0
, but unlike p, p

0
does not decrement after every

iteration, and it only decrements in case where an addi-

tional ASIL decrease has been done in a specific iteration.

It is worth pointing out that the value of p differs from p
0

and both of their values dynamically change as the search

evolves. The value of p is altered with a single increment

after three iterations are done while the value of p
0

is

altered with a single increment after four iterations are

done. Both of their counts are reset when each reaches its

Table 2 Average run time in seconds to find optimal solution using

penalty-based GA approach

Cost heuristics HBSM 1 HBSM 2 HBSM 3

Linear 1.04 4.67 15.51

Experiential-I 1.21 7.32 14.63

Experiential-II 1.07 2.47 3.31

Logarithmic 1.98 2.35 3.04
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limits. In order to find a better solution, the approach

presented in [6] declines move restriction to ensure better

diversification of the search. The search ends if a number

of repetitions are achieved without improving the solution.

In terms of time required to find an optimal ASILs

allocation, Tabu search-based approach made improve-

ments over the penalty-based GA approach. Table 3 shows

the average run time of the Tabu search-based approach to

finding optimal ASILs allocation for the three variants of

the hybrid braking system.

Penguin Search Optimization Algorithm

Proposed by Gheraibia and Moussaoui [53], Penguin

Search Optimization Algorithm (PeSOA) is a new algo-

rithm in the nature-inspired meta-heuristics. PeSOA

imitates flightless birds hunting mechanisms by guiding the

search strategies using several rules. Those rules resume

the foraging behavior of penguins. A summary of the rules

is presented as follows.

The optimization process starts by generating a popu-

lation P of penguins. The population is then divided into

several groups, where each group contains n number of

penguins. The value of n varies depending on the food

availability in a specific area, more food implies more

penguins. Regarding their oxygen reserve, penguins

stochastically explore the sea searching for food. They dive

to different levels and each group hunts in a particular

depth depending on the energy gain. Communication

among sea birds is presented in two forms: intra-group and

inter-group. As the oxygen reserve depletes penguins sur-

face up and share information about food location and

quantity with the rest of the group. This is the intra-group

communication. The food available in certain areas may

not be sufficient to feed the whole group; in such case,

some members of the group or the whole group moves to

another group through inter-group communication.

The PeSOA was used by Gheraibia et al. [54] to find an

optimal ASILs allocation. The algorithm uses the concept

of equivalent classes to prioritize a set of failure modes.

Equivalent classes are the class of failure modes that pro-

duce the same integrity, but may have different costs.

Elements of lower cost are assigned a higher priority while

elements of higher costs are assigned a lower priority. The

classes are then constructed by building all possible com-

binations of each ASIL (from ASIL 1 to ASIL 4). Next, the

cost heuristic function is used to calculate the cost of each

combination, followed by priority generation which con-

sists of sorting the cost of elements of the classes

ascendingly. After that, as previously mentioned, grant

low-cost elements a high priority and high-cost elements

low priority. Priorities guide the penguins search while

improving the current solution by replacing the low-pri-

ority ASILs with others with higher priority. This strategy

may violate the system safety requirements and lead to turn

the current solution into infeasible one, but the algorithm

got a handle of the situation by incrementing the ASIL 0

components to ensure solution feasibility.

Since priority classes help to reduce the solution space

by considering equivalent classes, it leads to a better esti-

mation of the population size. A population of P penguins

that comprehends a set of feasible solutions is generated

and divided into several groups; this technique guarantees

that the search would not be trapped in the local optima.

Population partitioning is done on the basis of how fre-

quently a failure mode appears in the minimal cut sets. To

do so, minimal cut sets of the system are parsed. After that,

failure mode frequencies are calculated and ordered in a

way that ensures a good distribution of the population by

assigning each group of penguins a set of failure mode

ASILs to handle during the search progress. This will

further lead to an optimal ASILs allocation. Each penguin

generates a neighborhood of solutions and chooses the best

one among them subject to the fitness function, i.e., if the

fitness of the new solution is higher than the current one.

The penguin is allowed to move to another position in the

upcoming iteration, and the oxygen reserve is updated

which grants the penguin further extendibility of the

search. The size of the neighborhood is related to the

oxygen reserve, which differs from a penguin to another.

Higher oxygen reserve implies larger neighborhood of

solutions. Contrariwise, if the solution is not improved,

then the oxygen reserve decrements; consequently, the

solutions neighborhood size is reset to 1. Penguin’s popu-

lation is redistributed according to the improvement each

penguin has achieved. The improvement is represented by

the difference between the cost of the current solution and

the new one. The termination criterion is reached when the

total cost stops decreasing.

By using the concept of equivalent class and multi-

group communication, the PeSOA-based approach finds

solutions quickly compared to the GA and the Tabu search-

based approaches. PeSOA-based approach was applied to

the three variants of hybrid braking systems, and the results

presented in Table 4 show the improvements over other

approaches.

Table 3 Average run time in seconds to find optimal solution using

Tabu search-based approach

Cost heuristics HBSM 1 HBSM 2 HBSM 3

Linear 0.05 3.65 4.44

Experiential-I 0.74 4.20 14.70

Experiential-II 0.84 0.79 5.72

Logarithmic 0.31 1.82 1.91
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Ant Colony Algorithm

Recently, a methodology has been proposed by Gheraibia

et al. [55] for ASILs allocation problem. This method

extends the work presented in [56] and uses the Ant Colony

Optimization (ACO) [57, 58] to allocate safety require-

ments. The ant colony algorithm is a well-known swarm

intelligence algorithm. It imitates the collaborative

behavior of an ant colony. In ACO, each ant acts separately

by investigating the area and after each tour, each ant

updates pheromone to inform its affiliates for the quality of

its previous tour.

ACO has been used to solve the ASILs allocation

problem by incorporating a couple of strategies to reduce

the research space before starting the optimization process.

These strategies are based on both internal and external

information on the cut sets and the cost functions. The first

strategy is based on the cost function values. After ana-

lyzing the different combination of failure modes ASILs, it

was found that according to the cost function, it is possible

to discard some combinations, and by doing so, the search

space is reduced considerably. The second search space

reduction strategy is based on the cut sets. This approach

aimed to reduce the search space by reducing the number

of possible ASILs for each failure mode (i.e., reduce the

range of each failure mode ASIL from five possibilities to

lower value).

The ant colony algorithm uses these strategies to achieve

the optimal ASILs allocation at a reasonable time. The

ASILs allocation problem has been formulated as a graph

where the nodes represent the failure modes and the edges

represent the ASIL allocated to the destination node of

these edges. This new representation of the ASILs alloca-

tion problem helps the ants to explore the search space

efficiently. Each ant explores the graph, and at the end, it

updates the pheromone value to communicate to other ants

the quality of the explored path. In this way, ants can make

informed decisions while exploring the search space, which

in turn results into improved solution. Ant colony algo-

rithm for ASILs allocation has been evaluated using two

different case studies: the hybrid braking system and the

steer-by-wire system. Table 5 shows the results for the

three variants of the HBSM. As seen from this table, in

terms of execution time, the ACO-based approach out-

performed all the existing approaches.

Discussion and Future Outlook

ASILs allocation is one of the important tasks that is

needed to be performed in the automotive industry to

comply with ISO26262 standard in order to satisfy the

safety requirements of the system being developed while

reducing the development cost. Due to the nature of the

problem and the ASILs decomposition rules defined in the

ISO26262 standard, the ASILs allocation problem is cate-

gorized to have a combinatorial nature. Over the years,

researchers have devoted their efforts to find an efficient

solution to the ASILs allocation problem. As an outcome,

various techniques have been developed to solve this

problem and these techniques tend to gravitate toward two

different paradigms—exact and optimization approaches.

The approaches used for ASILs allocation have their

own advantages and disadvantages. In general, if there

exists a solution to a particular ASILs allocation problem,

the exact approaches guarantee to find the solution.

Although these approaches guarantee to find a solution,

they may take an exceptionally long time to find it. For this

reason, these approaches can be used for ASILs allocation

of smaller systems, but if the system is complex and large,

application of the exact approaches will not be feasible.

Introduction of optimization approaches has improved the

execution performance of the ASILs allocation process

greatly. Unlike the exact approaches, the optimization

approaches cannot guarantee an optimal solution, but they

can provide the near-optimal solutions within a reasonable

period of time. In many cases, these near-optimal solutions

are sufficient and can guide to an improved design of

critical systems by satisfying critical safety requirements.

More importantly, the optimization approaches can be

applied to ASILs allocation of large-scale systems, which

is not possible using exact approaches.

Although, in terms of execution time, optimization

approaches generally perform better than exact approaches,

these approaches have their own issues. For example, the

Table 5 Average run time in seconds to find solution using ACO-

based approach

Cost heuristics HBSM 1 HBSM 2 HBSM 3

Linear 0.003 0.01 0.16

Experiential-I 0.007 0.02 0.35

Experiential-II 0.009 0.03 0.62

Logarithmic 0.008 0.02 0.20

Table 4 Average run time in seconds to find optimal solution using

PeSOA-based approach

Cost heuristics HBSM 1 HBSM 2 HBSM 3

Linear 0.08 0.11 0.27

Experiential-I 0.09 0.38 0.59

Experiential-II 0.10 0.41 0.89

Logarithmic 0.12 0.21 0.32
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integer linear programming approach is flexible and sim-

ple, and it can solve complex problems. The issue with this

approach is that the problem in hand must be linear in

nature, but in the real world, problems rarely have a linear

nature. Moreover, the ILP approach concentrates on either

maximizing or minimizing an objective function, meaning

it is not suitable for multi-objective optimization problems,

but most real-world problems in dynamic environments

have multiple objectives to optimize.

From the review, it is noticed that improvement (in terms

of execution time) has been made within the optimization

approaches by following different strategies. For example,

the PeSOA approach has made improvement over GA and

Tabu search-based approaches by reducing the search space

by using the concept of equivalent classes and also by

applying the concept of multi-group communication.

However, the multi-group communication can lead to longer

execution time if there exists only one solution to a given

problem. On the other hand, the ant colony-based approach

made improvement over all other approaches by cutting the

search space by adopting two strategies and by formulating

the ASILs allocation problem as a graph-search problem,

which makes it the superior approach so far.

Although the approaches found in the literature help to

automate the ASILs allocation problem, there exist many

challenges in this area. From the review, it is seen that the

exact approaches guarantee a solution for smaller systems.

However, they do not scale for larger systems. Future

research may attempt to improve the performance of the

exact solvers by developing a more efficient encoding

mechanism or by utilizing the increased computing power

available in modern machines. As suggested in [23], one

possible option may be the use of parallelization to expe-

dite the search process. This is also applicable to the

optimization approaches.

At present, all the approaches find solution to the ASILs

allocation problem based on qualitative analysis of fault

trees, i.e., based on the minimal cut sets. The failure rates/

probabilities of the basic events of the fault trees are not

utilized in the ASILs allocation process. In the future, it is

worthwhile performing research to develop higher level

functionalities by taking extra parameters into account,

such as the quantitative data (e.g., failure rates) related to

the basic events of the minimal cut sets. At the same time,

some of the existing approaches allow a system analyst to

incorporate their preferences in the ASILs allocation pro-

cess. Future trend of ASILs allocation problem may see the

inclusion of other stakeholders’ preferences in the alloca-

tion process. For instance, new techniques may be

developed to allow the designers to add their preferences so

that the designers’ choices would be taken into consider-

ation when identifying good solutions. Moreover, designers

may be given more control on the ASILs allocation to

components of the system by using a mix of cost heuristics

and/or to take into account the cost information related to

certain categories of components. In terms of experimental

studies to verify the performance of the approaches, cur-

rently the approaches are mostly evaluated by applying

them to different version of hybrid braking systems. In the

future, we may expect to see the use of different case

studies and problem formulation methods to test each

approach in order to achieve better performance.

Conclusion

In this paper, we presented an overview of various concepts

related to the automotive safety integrity levels allocation

and decomposition problem. We introduced ASILs allo-

cation as a real-world problem having a combinatorial

nature that is directly related to peoples’ lives. The lack of

such a review of the literature that gives an overview of the

problem was the main motivation to review the concepts

and the approaches used to allocate ASILs. The review

introduced the origins of the problem and covered a

background study of the fundamental concepts related to

the ASILs allocation problem. We briefly presented the

IEC 61508 and ISO26262 standards; then, we provided a

detailed explanation of the ASILs allocation problem,

including the fitness function and the solution quality

measurements. Next, we reviewed different methods ded-

icated to allocate ASILs by categorizing them as exact and

optimization approaches according to their nature. We

provided a detailed explanation for the resolution

methodology of each approach, followed by a review that

contains the strengths and weaknesses of each technique.

Finally, we discussed the remaining challenges in the

ASILs allocation problem. In the future, we plan to extend

the review by including the safety requirement allocation in

other areas such as Development Assurance Levels (DALs)

in the aerospace industry.
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