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Abstract Characterizing thermally sprayed coatings

remains challenging due to the interplay between different

operating and process parameters. Currently, no general

framework exists for accurately predicting the coating

characteristics under specific operating conditions. In this

paper, artificial intelligence models were employed to

investigate a case study of generating superhydrophobic

coatings by suspension plasma spray (SPS), an emerging

thermal spray process that can produce coatings with micro

and nano-scale features. The approach aimed to relate key

thermal spray process parameters such as plasma torch

nozzle diameter, plasma power, standoff distance, grit-blast

effect, and suspension solvent type to different coating

characteristics such as water contact angle, sliding angle,

and surface roughness. Machine learning (ML) algorithms

of both tree-based (ranging from linear regression and

random forest to improved gradient boost) and deep-neural

network models were investigated using a recent dataset of

SPS experiments. Following the training of the ML models,

selected algorithms were tested on unseen SPS data points

at different operating conditions. The ML models were able

to predict the sliding angles with good accuracy of over

80% based on a limited dataset. Finally, a state-of-the-art

generative adversarial network (GAN) was employed to

generate realistic scanning electron microscope (SEM)

images of SPS coatings with specific sliding angles. These

GAN-generated SEM images were qualitatively and visu-

ally satisfactory, paving the way for a machine-learning

approach to controlling thermally sprayed coating

microstructures.

Keywords computer vision � modeling of coating

formation � scanning electron microscopy (SEM) �
suspension spraying � machine learning � suspension
plasma spray (SPS) � surface morphology

Introduction

Thermal spray is a common method of applying coatings

on surfaces to improve their functional performance. It

works by heating and spraying molten or semi-molten

particles onto the substrates to form coatings, where par-

ticles form bonds with the surface and impair the desired

mechanical and thermal properties and has direct applica-

tions in aerospace, renewable energy, and healthcare (Ref

1, 6).

This process can coat various materials and components

to increase their resistance to heat, corrosion, erosion, or

wear.
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A liquid feedstock in the suspension spray plasma (SPS)

process can generate sub-micron molten droplets, resulting

in nanometer-scale microstructures, as seen in Fig. 1.

Due to the significantly smaller splats produced by SPS

compared to conventional atmospheric plasma spray

(APS), it is possible to create entirely new or significantly

improved coating structures (Ref 7, 9, 12). SPS is currently

an active research topic in thermal spray technology with

applications in thermal barrier coatings (TBCs), fuel cell

component manufacturing, and, more recently, superhy-

drophobic SPS coatings (Ref 10, 12).

The current techniques of fabricating superhydrophobic

coatings involve roughening the low-energy surface with

low-energy materials and necessitating complex methods

to enhance microstructure properties. This is where SPS

coatings outperform alternatives, as the microstructure

properties of the coating can be modified by adjusting

process parameters such as plasma torch nozzle diameter,

plasma power, standoff distance, grit-blast effect, and

suspension solvent type (Ref 12). For instance, when water

and ethanol are used separately as suspension solvents in

an application, the water-based suspension coating lacks

the columnar texture observed with the ethanol-based

suspension. This could be due to a variety of factors,

including differences in atomization, heat capacity, or

latent heat of vaporization, all of which result in a higher

proportion of unmelted particles in the water-based

suspension (Ref 12). These are just a few of the possible

causes of the varied textures; the true cause may be just one

of them or a combination of all. Altering process and

operating parameters such as injection speed, temperature,

and nozzle diameter can achieve different coating charac-

teristics. And slightly changing any of these parameters

may result in completely different coating properties. Thus,

quantifying these variables in a theoretical formula is a

daunting task, as it would require physically producing and

recording the coatings each time a variable is altered.

Despite the wide range of applications and studies, the

control and build-up of SPS coating, which involves many

processes and operating parameters, has yet to be fully

understood. This is because the acceleration of coating

particles at high speeds onto the surface can result in

numerous different coating thickness, porosity, or colum-

nar structures. Subsequently, the resulting coating can be

characterized in terms of thermal or mechanical properties,

and its microstructure can be examined using a scanning

electron microscope (SEM) image.

Traditionally, coating analysis is associated with phys-

ically spraying the coatings and then capturing and char-

acterizing the coating microstructure properties using a

microscopic imaging system. However, one limitation of

this approach is that it is time-consuming and requires

expert knowledge of the process. In addition, setting up a

thermal spray workstation requires costly equipment, such

Fig. 1 Schematic of the Suspension Plasma Spray process. Reprinted

from Surface and Coatings Technology, Vol. 329, Navid Sharifi,

Fadhel Ben Ettouil, Christian Moreau, Ali Dolatabadi, Martin Pugh,

Engineering surface texture and hierarchical morphology of

suspension plasma sprayed TiO2coatings to control wetting behavior

and superhydrophobic properties, pages no. 139–148, Copyright

2017, with permission from Elsevier (Ref 12)
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as an industrial robotic arm and a high-power ventilation

system. To complement the physical approaches, a thermal

spray digital-twin system can be an interesting alternative

to potentially reduce costs while also allowing extensive

control over the properties of the coating generated. In

practice, this system could simulate the thermal spraying

process to provide the desired coating characteristics. Since

this process occurs entirely in a simulation environment, it

can be run numerous times while modifying the operating

conditions or process parameters to generate and poten-

tially optimize functional coatings.

Machine learning and predictive analytics are currently one

of the most active research areas within artificial intelligence

(AI) and have advanced rapidly in recent years. Machine

learning has been successfully applied to the analysis of

complex interactions from engineering applications to

healthcare (Ref 2, 8, 14). However, there have been few

studies devoted to the application of AI to thermal spray

processes. It is worth noting the recent work by (Ref 11, 13),

which used regression-based ML models to infer single out-

put, such as the coating hardness or critical velocity for the

cold spray process. However, neither the relative importance

of the input features nor the coating generationwas addressed.

By introducing AI-based prediction models and com-

puter-generated images, one may be able to provide an

alternative to the traditional approach of physical testing

and characterization of coatings. Particularly, because SPS

coatings do not follow a predictable sequence when oper-

ating conditions are changed, they are an ideal candidate

for using AI to predict coating characteristics. Incorporat-

ing Prediction models allow for estimating coating char-

acteristics based on spray parameters. Furthermore,

generative adversarial networks (GAN) could enable the

production of computer-generated images of SEM coating

surfaces based on operating conditions. Thus, using AI in

thermal-spray applications would save time and reduce

operating costs while providing accurate predictions.

Due to the process’s complexity, most studies can only

analyze a subset of thermal spray process variables without

optimization. This paper aims to use machine learning and

deep learning techniques to predict the properties and

characteristics of thermally sprayed coatings. As a proof of

concept, we will focus on the recent application of SPS for

generating SHS coatings, which involves numerous mate-

rial and process parameters, the impact of which on the

coating characteristics is traditionally unclear.

Methodology

We investigate a machine and deep learning approach

mapping SPS process parameters to the coating properties.

An overview of the workflow is depicted in Fig. 2.

Following data collection, analysis, and processing, several

machine learning regression models were used to predict

coating wetting characteristics, and subsequently, a deep

learning technique was employed to generate SEM

micrographs of the corresponding process parameters.

Sample Description and Dataset Selection

The current study employs data from the author’s previous

work on engineering superhydrophobic coatings using the

SPS process (Ref 12). The data set includes about 27 dis-

tinct experimental samples with three different suspension

compositions, and the coating was applied to substrates that

had previously been grit-blasted with alumina particles.

The summary of the process parameters is illustrated in

Table 1. The actual data points and parameter combina-

tions are included in Table 2.

There are a few requirements for selecting a training

dataset for ML prediction. The first step is to ensure that

the dataset is complete and that no data that could be

critical to our application is missing. We must also look for

diversity in the dataset to maximize learning and ensure a

correct fit. Finally, we need consistency in the data

recording, which in our case means ensuring that all

experimental data was obtained under similar operating

conditions using the same setup. Lastly, numerous (over

100) SEM micrograph images of coatings subjected to

Fig. 2 Machine and deep learning workflow to estimate SPS coating

properties
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different spraying conditions and scales exhibiting diverse

surface textures and wetting behavior were utilized.

We aimed to improve these predictions by incorporating

a wide range of process parameters as inputs. In contrast,

the outputs were based on the sliding angle and water

contact angle, two measures of the coating’s wettability.

These values quantify surface wettability and are particu-

larly useful for identifying the coating microstructure, such

as the column-like structures. Experimental observation

qualitatively suggests that the water contact angle decrea-

ses as the sliding angle increases. In addition, as the sliding

angle decreases, the columnar structure becomes well

defined, as illustrated in Fig. 3 by the three SEM images,

where the first image represents a surface of sliding angle

of 13.3̊, the second 7.1̊, and the third 3.4̊. Using computer

vision to analyze images, a detailed quantitative assess-

ment of the mapping between columnar structures and

sliding angles will be provided in Sect. ‘‘Microstructure

Analysis Using Computer Vision’’.

Data Pre-processing and Analysis

The statistics on the dataset collected from the experiment

are shown in Table 3, which is subsequently used for ML

analysis. The statistics in Table 3 correspond to the mean,

median, maximum, and percentiles of the different process

variables. This is a preprocessing step to ensure that the

data are consistent, which is necessary for large datasets

that cannot be displayed all at once. In addition, this

showcases the diversity in our dataset.

Before applying ML models, the features (X) were

scaled using standardization as follows:

X0 ¼ X�lð Þ
r

where l is the mean and r is the standard deviation of the

feature values. The standardization of input data is per-

formed so that features with a variance that differs from the

others by orders of magnitude, would not skew the algo-

rithm’s estimation ability.

For certain features, such as the solvent used for the

plasma spray application, the labels were either one kind of

solvent or the other. Since these values were not numerical,

we had to convert them to a computer-readable format.

This was accomplished by converting the choice between

water and ethanol into a binary selection, with water being

1 and ethanol 0 in the same feature. This approach would

be ideal for all practical purposes; however, we aim for this

work to be a proof of concept that can be extended to other

process parameters, including different solvents. As a

result, the binary approach would be inadequate in

accounting for different solvent compositions. Conse-

quently, we adopted the one-hot encoding representation

by creating two new feature groups, water and ethanol.

Here, one is true (or 1) when the corresponding feature is

Table 1 SPS operating

conditions overview
Variable parameter Levels Abbreviations

Grit-Blast Coarse, medium, fine C, M, F

Suspension solvent Ethanol, Water E,W

TiO2 weight percent 10, 20 (weight%) 10%, 20%

Plasma power 25, 36, kW LP, HP

Standoff distance 3, 5, cm LSD, HSD

Plasma torch nozzle diameter 5, 8, mm SND, LND

Table 2 SPS operating conditions dataset

Condition Grit-blasting WCA, � SA, �

10-E-LP C 165 ± 1 11.7 ± 1.7

M 162 ± 1 10.3 ± 1.2

F 165 ± 1 10.1 ± 0.7

10-E-HP C 166 ± 1 4.1 ± 0.5

M 165 ± 1 3.7 ± 3.7

F 168 ± 1 1.3 ± 0.3

10-E-LSD C 164 ± 1 16.3 ± 1.1

M 155 ± 1 13.3 ± 1.0

F 165 ± 1 9.8 ± 1.0

10-E-SND C 165 ± 1 6.2 ± 0.5

M 159 ± 1 7.2 ± 0.5

F 163 ± 1 5.3 ± 0.7

10-W-LP C 137 ± 8 [ 20

M 140 ± 5 [ 20

F 142 ± 3 [ 20

10-W-HP C 154 ± 1 14.2 ± 1.8

M 152 ± 1 11.1 ± 2.2

F 159 ± 1 8.4 ± 1.3

20-E-LP C 165 ± 1 3.8 ± 1.7

M 169 ± 1 3.4 ± 1.9

F 170 ± 1 1.4 ± 0.3

20-E-HP C 157 ± 1 7.1 ± 0.9

M 155 ± 1 6.3 ± 0.4

F 160 ± 1 4.0 ± 0.5
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used, and all the others would be false (or 0). This allows

us to potentially account for additional types of solvents as

new features in the future, as depicted in Table 4.

Given the limited dataset, increasing features may result

in reduced accuracy; however, we consider adaptability

more critical to developing our workflow at this point in

time.

Microstructure Analysis Using Computer Vision

We employed computer vision using python and the scikit-

image image processing library to characterize the

microstructure of coatings based on ‘column (blob)

detection’ algorithms. Every sliding angle value had

corresponding images, around 800 images each which were

cropped to the same magnification. In the present case, the

model was able to identify the columnar structures of the

coating and quantify the effect of sliding angle on the

columns. To quantify the microstructure of the coatings

based on image processing, we used pixel intensity clus-

tering algorithms to detect pixel clusters referred to as

blobs, which in our case represent the pillar or column

structures of the SEM micrograph of the coating. To

identify these blobs, we segmented the images by thresh-

olding. Thresholding enables the identification of blobs;

after selecting a threshold value, images with pixel values

less than that threshold are set to 0, while the others are set

to 1. This provides a clear distinction between the back-

ground and the foreground. For our use case, choosing a

constant thresholding value was not very efficient, as we

would be working with images taken from different angles

with varying exposures and lighting. We thus employed

adaptive thresholding with Otsu’s binarization algorithm

after applying a Gaussian blur to remove noise. Otsu’s

method chooses a threshold value automatically for each

image from the image histogram, which not only avoids

Fig. 3 SEM micrographs illustrating deviations obtained in coating structure with differing sliding angles and water contact angle

Table 3 Statistical analysis of the dataset

Grit-blast TiO2 weight percent Plasma power Standoff distance Nozzle diameter Sliding angle Water contact angle

Count 27 27 27 27 27 27 27

Mean 2.5 14.4 28.7 4.8 7.67 7.8 160.5

std 0.83 5.06 5.28 0.64 0.96 5.71 8.79

Min 1.5 10 25 3 5 1.3 137

25% 1.5 10 25 5 8 3.8 157

50% 2.5 10 25 5 8 6.3 164

75% 3.5 20 36 5 8 10.2 165

Max 3.5 20 36 5 8 20 170

Table 4 One-hot encoding for the choice of suspension liquid

ID Solvent Solvent ethanol Solvent water

1 Ethanol 1 0

2 Water 0 1
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manually choosing a global threshold value for each image

but also increases the accuracy of threshold value selection.

We thus do not use a constant global thresholding value;

Otsu’s automatic segmentation technique is employed for

adaptive thresholding.

After image thresholding, we used the Difference of

Gaussian (DoG) method (Ref 19) for blob detection. This

method entails blurring the images with increasing stan-

dard deviations and layering up the differences in two

successive blurs in a cube. The local maxima observed are

the blobs in the image. This allows the algorithm to work

faster than one of its counterparts, the Laplace of Gaussian

(LoG) method, which calculates the Laplacian instead of

the difference from the successive images. The LoG

operator works by initially convoluting an image say f (x,

y) by a Gaussian kernel g as:

g x; y; tð Þ ¼ 1

2pt
e�

x2þy2ð Þ
2t

Such that L(x, y; t) is defined as f (x, y)�g (x, y, t), then

using the convoluted image we define the scale normalized

Laplacian operator.

r2
normL ¼ t Lxx þ Lyy

� �

The DoG algorithm operator is mathematically defined

as:

r2
normL x; y; tð Þ � t

Dt
L x; y; t þ Dtð Þ � L x; y; tð Þð Þ

where L (x; y; t) satisfies otL ¼ 1
2
r2L; the diffusion

equation.

In addition, DoG is more accurate than its other coun-

terpart, the Determinant of Hessian (DoH), as it can iden-

tify much smaller blobs (smaller pillar-like microstructures

in our case).

The DoH operator works as follows:

detHnormL ¼ t2 LxxLyy � L2xy

� �

One downside of DoG is that it can only identify light

blobs on a dark background, unlike the DoH, which can

also identify dark blobs on a light background. However,

this fact works to our advantage in this specific case since

the features we wish to identify are the column-like

structures, which are light peaks on a dark background of

valleys.

Figure 4(a) depicts a sample SEM coating micrograph;

its binarized form highlighting the columns and providing

contrast for computer recognition is shown in Fig. 4(b).

Finally, blobs were identified using the DoG algorithm in

Fig. 4(c).

Machine and Deep Learning Workflow

For the machine learning aspect, we employed both

supervised and unsupervised learning techniques. In the

proposed workflow, supervised learning was used to esti-

mate the coating wetting characteristics, while the unsu-

pervised learning technique was applied to automatically

cluster coating SEM images based on microstructure

analysis for the GAN. Additional information on the ML

algorithms, training, and hyperparameters used is provided

below.

Supervised Learning

Supervised learning in the form of regression algorithms

was used to predict surface properties such as the sliding

angle and water contact angle. Regression algorithms were

trained on input data and were used to estimate the outputs.

Algorithms such as linear regression, decision trees, ran-

dom forest and XGBoosting were used. All the algorithms

used showed promise; however, some appeared prone to

overfitting. This was corrected by tuning and optimizing

their hyperparameters using GridSearch: for XGB, espe-

cially, max_depth (the maximum depth of a tree), sub-

sample (the fraction of observations needed to be sampled

for each tree), min_child_weight (minimum sum of

weights of total observations required in a child) were

considered. Their performance was then evaluated based

Fig. 4 Computer Vision Analysis to obtain structural properties from SEM micrographs
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on their mean squared error and coefficient of determina-

tion or R2 score.

Unsupervised Learning

We applied unsupervised learning based on K-means

clustering algorithms on our data to determine how to use

the GAN to generate accurate images efficiently. Since the

GAN was trained on a dataset of images, it would produce

a computer-generated image with similar coating proper-

ties. The task of the clustering algorithm was to find the

best split in the dataset of the images to train the GAN on a

subdivision based on the sliding angle. The reasoning

behind having separate datasets is that it allows for the

generation of images with distinctive properties that can

more accurately produce the desired coating

microstructure.

For this task, we used the K-means clustering algorithm

and its elbow method to find the best split in terms of the

sliding angle, allowing for a more diverse and representa-

tive dataset and hence more accurate results. The K-means

algorithm was trained by using as features the number of

blobs or column structures for each sliding angle, the

average diameter, and the average area for each of the

blobs. This was done since a larger blob diameter implies

thicker column structures, and larger average areas imply

higher column density in the region. This helped to give a

kind of physical consistency to our workflow since feeding

information about the structural properties of the columnar

structures is what helps it create distinct clusters. These

clusters formed using the K-Means clustering algorithm

and were made based not only on the blobs’ physical

characteristics but also on the sliding angle for the SEM

images. Figure 5 shows the K-Means clustering algorithm,

with the red dot representing the optimum number of

clusters using the elbow method—in this case, three. With

this information, we created three classes of SEM images

based on their sliding angle, each containing about 3500

images.

Generative Adversarial Network (GAN)

The GAN consists of two adversarial neural networks: the

generator, which tries to replicate the original image, and

the discriminator, which assesses whether the replication is

comparable to the original images.

As illustrated in Fig. 6, a GAN works as follows: a

random noise is fed into the generator, which is then forced

to produce an image. The generated image from the
Fig. 5 K-Means Algorithm and Elbow Method to determine the ideal

number of clusters for our dataset

Fig. 6 General overview of the GAN architecture
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generator is then compared to the actual image using the

discriminator. The neural network in the generator learns

from this comparison and produces another image with the

data it has just learned. This process is repeated over and

over, and the generator improves at producing realistic-

looking images to the point that the discriminator cannot

differentiate between the generated and real images. In the

instance where the discriminator cannot differentiate

between the original dataset and the produced images, the

GAN has succeeded in producing realistic images.

In this work, we used state-of-the-art StyleGAN3 ADA

neural network architecture (Ref 18) to improve the quality

of our images. StyleGAN3 offers changes to the GAN

generator and introduces a mapping network in addition to

the synthesis network. This mapping network allows con-

trol of the intermediate latent vector and hence control over

the ‘style’ of the image produced by the generator. This

capability allowed for the exploration of the latent space as

well as the generation of different visual variations of the

same image. However, latent vector space exploration is

beyond the scope of this paper, so we instead focused on

the outputs without altering their latent space.

The main differences between traditional GAN archi-

tecture and a style-based one, as illustrated in Fig. 7, are as

follows.

The style-based architecture employs a baseline pro-

gressive growing method in which the generator and dis-

criminator are built with small-sized images, and after

stability is established, the dimensions are doubled until the

desired output size is reached. The AdaIN layers stan-

dardize the outputs of the feature maps and add the style

vector as bias. Finally, noise is added to the final output as

a stochastic deviation to make it appear more photo

realistic.

We trained the GAN on three datasets of images and

developed the associated trained models to represent all

Fig. 7 Difference between a traditional and style-based GAN

Generator architecture. Copyright 2021 IEEE. Reprinted, with

permission from IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol 43, Issue 12, Tero Karras, Samuli Laine, Timo Aila,

A Style-Based Generator Architecture for Generative Adversarial

Networks, pp. 4217–4228. (Ref 18)
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possible predicted sliding angle values. Since each dataset

of images corresponds to an interval of sliding angles,

hence each sliding angle estimated by the regression model

will be mapped to a certain dataset. The datasets included

around 3500 images, each with a resolution of

1024 9 1024 pixels and obtained from the original SEM

micrographs by sliding windows method. Each image was

operated on by a window of a specific size that would crop

out that portion, producing multiple images of the same

magnification from a single image. It is worth noting that

no other data augmentations apart from the sliding window

method were made.

A GAN usually produces an image from a random latent

vector, also known as the seed value. Each seed is unique

and reproducible; we used this property to generate a

consistent yet unique SEM coating image corresponding to

its sliding angle, another property which will be distinctive

to the coating. When a sliding angle is estimated, it pro-

duces a unique seed which is then used to generate an

image from the GAN. Figure 8 shows the images produced

by the GAN at different stages of its training cycle.

Fréchet Inception Distance (FID) (Ref 17) is used to

measure the similarity in the quality of images produced by

a generative model. In our case, the FID measures the

distribution of the produced images from the generator of

our GAN with the distribution of real images. The FID

score is the current standard for image quality comparison

because it imitates human pattern recognition. The lower

the FID score, the higher quality of the produced images.

Figure 9 shows the FID score of our generator model as a

Fig. 8 GAN training cycle producing images at intervals of every 80 epochs clockwise. Higher epochs signify longer training
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function of its training. We can see that even with a limited

working dataset, the FID score converges and hence shows

that image quality is improving over time.

Results and Discussion

As discussed in Sect. ‘‘Methodology’’, our workflow con-

sists majorly of two aspects: the coating characteristic

prediction and the consequent image generation and

validation.

To assess coating wetting characteristics, we used

regression models to predict the sliding angle. Specifically,

during the application of these models, 80% of our dataset

was utilized as the training set, while 20% was used as the

test set. This is important to note since the available dataset

is on the smaller side for regression algorithms, and further

segmenting it does not provide highly accurate results.

Table 5 shows that XGBoosting has the highest accu-

racy (R2-score over 0.85) and the lowest error, while the

k-nearest neighbors algorithm (kNN) has the lowest. This

is attributed to the fact that XGBoosting employs advanced

regularization algorithms that improves gradient boosting’s

generalizability. Since regression algorithms are generally

designed for large datasets, they tend to overfit on smaller

(or limited) datasets, as in the current work (Ref 15).

However, we can see an R2 score of over 0.70 and an

MSE under 0.2 from a few algorithms, which indicates that

our learning workflow performs works.

It is worth noting that our prediction algorithm performs

‘reasonably well,’ given a small dataset which shows

potential for future applications. The notion of ‘reasonably

Fig. 9 Fréchet Inception Distance metric values from our GAN’s

training as a function of training epochs over time

Table 5 Performance metrics for machine learning algorithms used

for prediction

Algorithms R2 score Mean squared error

Linear regression 0.49 0.25

K-Nth neighbor 0.58 0.2

Decision tree 0.69 0.15

Random forest 0.71 0.14

Gradient boosting 0.68 0.15

XGBoosting 0.87 0.06

CatBoost 0.58 0.2

Fig. 10 Original image from our dataset compared to synthetic image generated by the GAN
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well’ comes from the R2 score and MSE values. According

to the R2 score, we infer that 70% of the variability of the

output variable (Sliding Angle: SA) can be accounted for

by the prediction model, whereas only the remaining 30%

cannot be. This provides an indication of the ‘goodness of

fit’ of our prediction model. However, we may encounter

the case when we obtain similar R2 scores using distinct

prediction models that produce different errors. Although

the R2 score might be high in one case, the errors and

residuals may indicate that from the fit that the model is

Fig. 11 Comparison of various operating conditions and its effect on the coating microstructure
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biased. This raises the need for our second metric, the

Mean square error or MSE. The MSE provides us with an

account for the average squared errors such that the posi-

tive and negative errors do not cancel each other, thereby

avoiding ambiguity due to bias in the R2 score. Thus, we

obtain the following primitive convention for our under-

standing: prediction is unbiased and accurate when we

encounter a high R2 score and low MSE.

This completes the discussion of the first part of our

workflow. For the second part, we investigate the images

generated after the predictions of our regressor model.

As illustrated in Fig. 10, the images produced by the

GAN, while being completely artificial, look realistic. We

verify this not only through looking at the images, but also

running the blob detection algorithm as explained in

Sect. ‘‘Microstructure Analysis Using Computer Vision’’.

The blob detection algorithm validates the GAN generated

images for each seed value and outputs it. In case, the

unique seed received from the prediction model produces

an image that has different coating characteristics (differ-

ing column structures in terms of number, shape, or size) as

compared to the image class belonging to the specific

cluster, it produces the image corresponding to the math-

ematically subsequent seed value. This process is repeated

till we obtain a seed with a corresponding coating image

whose properties match the bounds set by our clustering

algorithm. This is the final image produced, thereby

maintaining accuracy and reproducibility.

These results demonstrate the capability of our work-

flow to estimate coating characteristics of an SPS process

based on its process parameters. Further, it generates an

image that looks identical to the one we obtain after

imaging the coating. But, since our GAN model uses the

outputs from our prediction model, the accuracy of the

image produced by the GAN is bound by the accuracy of

the prediction it uses. Thus, the better the prediction of the

regressors, the more accurate the image generated will be.

We show in Fig. 11 the prediction of our model from the

operating conditions to coating generation by combining

the regression algorithm (XGBoosting) and the GAN

model. Our learning model’s capability to map process

variables to coating microstructure is distinctive, and the

workflow can be enhanced with additional data. Further,

the ability to work with images could be used to better

describe the coatings’ pore space, pore connectivity, tor-

tuosity or to perform blobs analysis, which appears to

better describe the SHS coating roughness. Finally, the

impact of operating conditions could be evaluated based on

the deposited coatings. Such a technique could be used to

quantify digitally unmolten particles, cracks, or oxidized

particles in coating images.

Summary and Conclusion

In this paper, we explored the use of machine learning

algorithms and neural networks to predict suspension

plasma spray coating characteristics. We used supervised

learning algorithms on existing datasets to predict the

properties of any new coating. Using the sliding angle as

one of the major differentiating factors between coatings,

we used computer vision algorithms and identified the

correlation between the sliding angle and the columnar

structures in the coating. This suggests that the column

density decreases as the sliding angle increases. We further

concluded that for the extent of this paper, the estimated

sliding angle is unique, and one coating can only have one

sliding angle, as it is constrained to a specific geometry and

a specific number of columnar structures. This was deter-

mined when we explored the possibility of roughly clas-

sifying coating microstructure properties based on the

sliding angle.

Feeding the unique sliding angle to the GAN, in turn,

generates a unique image from scratch using our images

training dataset. The images of the coating are then

explored within the latent space of the GAN to improve

upon the image to resemble the properties of the real image

with a similar sliding angle value. This process is com-

pletely automated, and the effects of changing parameters

of the SPS operating conditions instantaneously produce

the resulting sliding angle and an SEM image of the

coating.

We observe an accuracy of over 80% in our regression

algorithms, which validates our method of predicting

coating characteristics.

The next steps include performing more physical

experiments to generate more data, enabling higher accu-

racy in our predicting algorithms. However, even now,

current results show promise and can be used as a pre-

liminary indicator of the properties of an SPS coating

without performing a physical spray application.
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