Skip to main content
Log in

An Overview of Thermally Sprayed Fe-Cr-Nb-B Metallic Glass Coatings: From the Alloy Development to the Coating’s Performance Against Corrosion and Wear

  • Review
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Fe-based bulk metallic glass (BMG) presents unique tribological and electrochemical properties. Given the inherent brittle nature and dimensional limitations of Fe-based BMGs, technological and scientific efforts are focused on their use for surface engineering solutions. Fe-based BMG coatings are promising to protect steel components operating in a wide array of hostile environments, with encouraging resistance against corrosion and wear. This article summarizes the progress of Fe-Cr-Nb-B glassy coatings in terms of alloy design, glass-forming ability, crystallization, powder production, thermally-sprayed coatings, and how the microstructural features dictate the basket of properties. The strategy for selecting the alloy composition with high glass-forming ability is discussed based on thermodynamic calculations. Two main methods are presented for feedstock powder production: gas-atomization and high-energy ball milling. Different processing routes to produce Fe-Cr-Nb-B coatings and deposits are summarized: detonation spraying, high-velocity oxygen fuel, flame spraying, non-vacuum electron beam cladding, and spray forming. The resulting phases (glassy and crystalline), microstructures, porosity levels, and hardness values are comparatively discussed and related to the corrosion and wear resistances. The final part of the work is dedicated to a new generation of Fe-based BMGs that emerged as contender to further enhance the corrosion and wear resistances.

Graphical Abstract

Illustration of the processes used to produce Fe-Cr-Nb-B alloys covered in this review. The thermal spraying routes considered are flame spraying (FS), high-velocity oxygen fuel (HVOF), and detonation spraying. Spray forming (SF) and non-vacuum electron beam cladding were also evaluated. (a) Secondary electron (SE) scanning electron (SEM) micrographs of gas-atomized, GA, and milled, M, feedstock powders. Cross-sectional backscattered electron (BSE) SEM imaging of coatings: (b) ~220-μm-thick from detonation spraying from gas-atomized feedstock, (c) ~280-μm-thick HVOF from gas-atomized feedstock, (d) ~200-μm-thick HVOF from milled feedstock, (e) ~200-μm flame spraying from gas-atomized feedstock, (f) ~220-μm flame spraying from milled feedstock, (g) ~1300-μm non-vacuum electron beam cladding from gas-atomized feedstock, and (h) spray formed ~5000-μm-thick deposit formed from the liquid. All images for the Fe60Cr8Nb8B24 alloy, except (b) Fe66Cr10Nb5B19 alloy and (g) Fe62Cr10Nb12B16 alloy. Bright phases identified as (Fe,Cr)NbB. [This figure is related to the manuscript "An overview of thermally sprayed Fe-Cr- Nb-B metallic glass coatings – From the alloy development to the coating’s performance against corrosion and wear"].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia and R.W.K. Honeycombe, “Steels: Microstructure and Properties: Fourth Edition,” Steels: Microstructure and Properties: Fourth Edition, 2017, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026700713&partnerID=40&md5=2f26d8ad6598a0135eee3d37408a337c.

  2. R.O. Ritchie, The Conflicts between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817-822. https://doi.org/10.1038/nmat3115

    Article  CAS  Google Scholar 

  3. D. Raabe, B. Sun, A.K. da Silva, B. Gault, H.-W. Yen, K. Sedighiani, P.T. Sukumar, I.R.S. Filho, S. Katnagallu, E. Jägle, P. Kürnsteiner, N. Kusampudi, L. Stephenson, M. Herbig, C.H. Liebscher, H. Springer, S. Zaefferer, V. Shah, S.-L. Wong, C. Baron, M. Diehl, F. Roters and D. Ponge, Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels, Metall. Mater. Trans. A, 2020, 51(11), p 5517-5586. https://doi.org/10.1007/s11661-020-05947-2

    Article  CAS  Google Scholar 

  4. Worldsteel Association, “2021 World Steel in Figures,” (Brussels), 2021, https://www.worldsteel.org/en/dam/jcr:976723ed-74b3-47b4-92f6-81b6a452b86e/World%2520Steel%2520in%2520Figures%25202021.pdf.

  5. United Nations, “World Population Prospects 2019,” Department of Economic and Social Affairs. World Population Prospects 2019, 2019.

  6. R.T. Loto, Study of the Corrosion Behaviour of S32101 Duplex and 410 Martensitic Stainless Steel for Application in Oil Refinery Distillation Systems, J. Mater. Res. Technol., 2017, 6(3), p 203-212. https://doi.org/10.1016/j.jmrt.2016.11.001

    Article  CAS  Google Scholar 

  7. ISSF, “Stainless Steel in Figures 2020,” (Belgium), 2020, https://www.worldstainless.org/Files/issf/non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2020_English_public_version.pdf.

  8. E. McCafferty, “Introduction to Corrosion Science”, Introduction to Corrosion Science, (Alexandria), Springer, Berlin, 2010.

    Book  Google Scholar 

  9. J. Soyama, G. Zepon, T.P. Lopes, L. Beraldo, C.S. Kiminami, W.J. Botta and C. Bolfarini, Microstructure Formation and Abrasive Wear Resistance of a Boron-Modified Superduplex Stainless Steel Produced by Spray Forming, J. Mater. Res., 2016, 31(19), p 2987-2993. https://doi.org/10.1557/jmr.2016.323

    Article  CAS  Google Scholar 

  10. G. Zepon, A.R.C. Nascimento, A.H. Kasama, R.P. Nogueira, C.S. Kiminami, W.J. Botta and C. Bolfarini, Design of Wear Resistant Boron-Modified Supermartensitic Stainless Steel by Spray Forming Process, Mater. Des., 2015, 83, p 214-223. https://doi.org/10.1016/j.matdes.2015.06.020

    Article  CAS  Google Scholar 

  11. M. Kulka, Trends in Physical Techniques of Boriding, 2019, p 99-253, https://doi.org/10.1007/978-3-030-06782-3_5.

  12. J.R. Davis, “Surface Engineering for Corrosion and Wear,” Surface Engineering for Corrosion and Wear Resistance, (Materials Park, Ohio), ASM International, 2001.

  13. M. Stoica, Fe-Based Bulk Metallic Glasses, J. Mater. Sci. (Wiesbaden), 2017 https://doi.org/10.1007/978-3-658-17018-9

    Article  Google Scholar 

  14. L. Liu and C. Zhang, Fe-Based Amorphous Coatings: Structures and Properties, Thin Solid Films, 2014, 561, p 70-86. https://doi.org/10.1016/j.tsf.2013.08.029

    Article  CAS  Google Scholar 

  15. B. Huang, C. Zhang, G. Zhang and H. Liao, Wear and Corrosion Resistant Performance of Thermal-Sprayed Fe-Based Amorphous Coatings: A Review, Surf. Coat. Technol., 2019, 377(4), p 124896. https://doi.org/10.1016/j.surfcoat.2019.124896

    Article  CAS  Google Scholar 

  16. C. Suryanarayana and A. Inoue, Iron-Based Bulk Metallic Glasses, Int. Mater. Rev., 2013, 58, p 131-166. https://doi.org/10.1179/1743280412Y.0000000007

    Article  CAS  Google Scholar 

  17. W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, J. Guo and Y. Qin, Fabrication and Characterization of Thermal-Sprayed Fe-Based Amorphous/Nanocrystalline Composite Coatings: An Overview, J. Therm. Spray Technol., 2014, 23(7), p 1157-1180. https://doi.org/10.1007/s11666-014-0096-z

    Article  CAS  Google Scholar 

  18. C.A.C. Souza, D.V. Ribeiro and C.S. Kiminami, Corrosion Resistance of Fe-Cr-Based Amorphous Alloys: An Overview, J. Non. Cryst. Solids, 2016, 442, p 56-66. https://doi.org/10.1016/j.jnoncrysol.2016.04.009

    Article  CAS  Google Scholar 

  19. H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu and Z.P. Lu, Fe-Based Bulk Metallic Glasses: Glass Formation, Fabrication, Properties and Applications, Prog. Mater. Sci., 2019, 103, p 235-318. https://doi.org/10.1016/j.pmatsci.2019.01.003

    Article  CAS  Google Scholar 

  20. D.H. Milanez, L.I.L. Faria, D.R. Leiva, C.S. Kiminami and W.J. Botta, Assessing Technological Developments in Amorphous/Glassy Metallic Alloys Using Patent Indicators, J. Alloys Compd., 2017, 716, p 330-335. https://doi.org/10.1016/j.jallcom.2017.05.105

    Article  CAS  Google Scholar 

  21. W. Klement, R.H. Willens and P. Duwez, Non-Crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 1960, 187(4740), p 869-870. https://doi.org/10.1038/187869b0

    Article  CAS  Google Scholar 

  22. P. Duwez and S.C.H. Lin, Amorphous Ferromagnetic Phase in Iron-Carbon-Phosphorus Alloys, J. Appl. Phys., 1967, 38(10), p 4096-4097. https://doi.org/10.1063/1.1709084

    Article  CAS  Google Scholar 

  23. R. Ray, R. Hasegawa, C.-P. Chou and L.A. Davis, Iron-Boron Glasses: Density, Mechanical and Thermal Behavior, Scr. Metall., 1977, 11(11), p 973-978. https://doi.org/10.1016/0036-9748(77)90249-6

    Article  CAS  Google Scholar 

  24. R. Hasegawa and R. Ray, Iron-boron Metallic Glasses, J. Appl. Phys., 1978, 49(7), p 4174-4179. https://doi.org/10.1063/1.325328

    Article  CAS  Google Scholar 

  25. Z.P. Lu and C.T. Liu, Role of Minor Alloying Additions in Formation of Bulk Metallic Glasses: A Review, J. Mater. Sci., 2004, 39(12), p 3965-3974. https://doi.org/10.1023/B:JMSC.0000031478.73621.64

    Article  CAS  Google Scholar 

  26. L.A. Davis, R. Ray, C.-P. Chou and R.C. O’Handley, Mechanical and Thermal Properties of Fe80B20 Glass, Scr. Metall., 1976, 10(6), p 541-546. https://doi.org/10.1016/0036-9748(76)90257-X

    Article  CAS  Google Scholar 

  27. A.L. Greer, K.L. Rutherford and I.M. Hutchings, Wear Resistance of Amorphous Alloys and Related Materials, Int. Mater. Rev., 2002, 47(2), p 87-112. https://doi.org/10.1179/095066001225001067

    Article  CAS  Google Scholar 

  28. R. Klinger and H.G. Feller, Sliding Friction and Wear Resistance of the Metallic Glass Fe40Ni40B20, Wear, 1983, 86(2), p 287-297. https://doi.org/10.1016/0043-1648(83)90167-9

    Article  CAS  Google Scholar 

  29. T. Imura, K. Hasegawa, M. Moori, T. Nishiwaki, M. Takagi and Y. Kawamura, Cyclicdeformation and Tribological Behavior of an Amorphous Iron-Based Alloy Film, Mater. Sci. Eng. A, 1991, 133, p 332-336. https://doi.org/10.1016/0921-5093(91)90081-W

    Article  Google Scholar 

  30. W.J. Botta, J.E. Berger, C.S. Kiminami, V. Roche, R.P. Nogueira and C. Bolfarini, Corrosion Resistance of Fe-Based Amorphous Alloys, J. Alloys Compd., 2014, 586(SUPPL. 1), p S105-S110. https://doi.org/10.1016/j.jallcom.2012.12.130

    Article  CAS  Google Scholar 

  31. Y. Fan, S. Zhang, X. Xu, J. Miao, W. Zhang, T. Wang, C. Chen, R. Wei and F. Li, Effect of the Substitution of Si for B on Thermal Stability, Magnetic Properties and Corrosion Resistance in Novel Fe-Rich Amorphous Soft Magnetic Alloy, Intermetallics, 2021, 138, 107306. https://doi.org/10.1016/j.intermet.2021.107306

    Article  CAS  Google Scholar 

  32. S.L. Wang and S. Yi, The Corrosion Behaviors of Fe-Based Bulk Metallic Glasses in a Sulfuric Solution at 70°C, Intermetallics, 2010, 18(10), p 1950-1953. https://doi.org/10.1016/j.intermet.2010.01.020

    Article  CAS  Google Scholar 

  33. V. Maurice, W.P. Yang and P. Marcus, XPS and STM Study of Passive Films Formed on Fe-22Cr(110) Single-Crystal Surfaces, J. Electrochem. Soc., 1996, 143(4), p 1182-1200. https://doi.org/10.1149/1.1836616

    Article  CAS  Google Scholar 

  34. H.M. Cobb, “The History of Stainless Steel,” (Materials Park, Ohio), ASM International, 2010.

  35. B. Elsener and A. Rossi, XPS Investigation of Passive Films on Amorphous Fe-Cr Alloys, Electrochim. Acta, 1992, 37(12), p 2269-2276. https://doi.org/10.1016/0013-4686(92)85122-2

    Article  CAS  Google Scholar 

  36. B.-M. Im, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, Electrochemical and XPS Studies of the Effects of Alloying Elements on the Corrosion Behavior of Amorphous Fe-Cr-Metalloid Alloys in 9 M H2SO4, Corros. Sci., 1993, 34(11), p 1829-1839. https://doi.org/10.1016/0010-938X(93)90020-H

    Article  CAS  Google Scholar 

  37. M.D. Archer, C.C. Corke and B.H. Harji, The Electrochemical Properties of Metallic Glasses, Electrochim. Acta, 1987, 32(1), p 13-26. https://doi.org/10.1016/0013-4686(87)87002-0

    Article  CAS  Google Scholar 

  38. M. Naka, K. Hashimoto and T. Masumoto, High Corrosion Resistance of Chromium-Bearing Amorphous Iron Alloys in Neutral and Acidic Solutions Containing Chloride, Corrosion, 1976, 32(4), p 146-152. https://doi.org/10.5006/0010-9312-32.4.146

    Article  CAS  Google Scholar 

  39. M. Madinehei, P. Bruna, M.J. Duarte, E. Pineda, J. Klemm and F.U. Renner, Glass-Formation and Corrosion Properties of Fe-Cr-Mo-C-B Glassy Ribbons with Low Cr Content, J. Alloys Compd., 2014, 615, p S128-S131. https://doi.org/10.1016/j.jallcom.2013.12.245

    Article  CAS  Google Scholar 

  40. Z.L. Long, Y. Shao, X.H. Deng, Z.C. Zhang, Y. Jiang, P. Zhang, B.L. Shen and A. Inoue, Cr Effects on Magnetic and Corrosion Properties of Fe-Co-Si-B-Nb-Cr Bulk Glassy Alloys with High Glass-Forming Ability, Intermetallics, 2007, 15(11), p 1453-1458. https://doi.org/10.1016/j.intermet.2007.05.002

    Article  CAS  Google Scholar 

  41. A. Inoue and J.S. Gook, Fe-Based Ferromagnetic Glassy Alloys with Wide Supercooled Liquid Region, Mater. Trans. JIM, 1995, 36(9), p 1180-1183. https://doi.org/10.2320/matertrans1989.36.1180

    Article  CAS  Google Scholar 

  42. A. Inoue, Y. Shinohara and J.S. Gook, Thermal and Magnetic Properties of Bulk Fe-Based Glassy Alloys Prepared by Copper Mold Casting, Mater. Trans. JIM, 1995, 36(12), p 1427-1433. https://doi.org/10.2320/matertrans1989.36.1427

    Article  CAS  Google Scholar 

  43. J. Shen, Q. Chen, J. Sun, H. Fan and G. Wang, Exceptionally High Glass-Forming Ability of an FeCoCrMoCBY Alloy, Appl. Phys. Lett., 2005, 86(15), p 151907. https://doi.org/10.1063/1.1897426

    Article  CAS  Google Scholar 

  44. V. Ponnambalam, S.J. Poon and G.J. Shiflet, Fe-Based Bulk Metallic Glasses with Diameter Thickness Larger than One Centimeter, J. Mater. Res., 2004, 19(5), p 1320-1323. https://doi.org/10.1557/JMR.2004.0176

    Article  CAS  Google Scholar 

  45. A. Inoue and X. Wang, Bulk Amorphous FC20 (Fe-C-Si) Alloys with Small Amounts of B and Their Crystallized Structure and Mechanical Properties, Acta Mater., 2000, 48(6), p 1383-1395. https://doi.org/10.1016/S1359-6454(99)00394-8

    Article  CAS  Google Scholar 

  46. J. Cheney and K. Vecchio, Development of Quaternary Fe-Based Bulk Metallic Glasses, Mater. Sci. Eng. A, 2008, 492(1-2), p 230-235. https://doi.org/10.1016/j.msea.2008.03.019

    Article  CAS  Google Scholar 

  47. Y. Guo, A.M. Jorge, A.C. de Silva, C.S. Kiminami, C. Bolfarini and W.J. Botta, Experimental and Thermodynamic Investigation of the Microstructural Evolution of a Boron-Rich Fe-Cr-Nb-B Alloy, J. Alloys Compd., 2017, 713, p 119-124. https://doi.org/10.1016/j.jallcom.2017.04.153

    Article  CAS  Google Scholar 

  48. Y. Guo, A.M. Jorge, C.S. Kiminami, C. Bolfarini and W.J. Botta, On the Ternary Eutectic Reaction in the Fe 60 Cr 8 Nb 8 B 24 Quaternary Alloy, J. Alloys Compd., 2017, 707, p 281-286. https://doi.org/10.1016/j.jallcom.2016.11.293

    Article  CAS  Google Scholar 

  49. B. Sundman, B. Jansson and J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153-190. https://doi.org/10.1016/0364-5916(85)90021-5

    Article  CAS  Google Scholar 

  50. K. Yamada, H. Ohtani and M. Hasebe, Thermodynamic Analysis of the Fe-Cr-B Ternary System, High Temp. Mater. Process., 2008, 27(4), p 269-283. https://doi.org/10.2355/isijinternational

    Article  CAS  Google Scholar 

  51. M.H. Cohen and D. Turnbull, Composition Requirements for Glass Formation in Metallic and Ionic Systems, Nature, 1961, 189(4759), p 131-132. https://doi.org/10.1038/189131b0

    Article  CAS  Google Scholar 

  52. A.L. Greer, Confusion by Design, Nature, 1993, 366(6453), p 303-304. https://doi.org/10.1038/366303a0

    Article  Google Scholar 

  53. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46(12), p 2817-2829. https://doi.org/10.2320/matertrans.46.2817

    Article  CAS  Google Scholar 

  54. A. Inoue, High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates (<I>Overview</I>), Mater. Trans. JIM, 1995, 36(7), p 866-875. https://doi.org/10.2320/matertrans1989.36.866

    Article  CAS  Google Scholar 

  55. A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., 2000, 48(1), p 279-306. https://doi.org/10.1016/S1359-6454(99)00300-6

    Article  CAS  Google Scholar 

  56. M. Rahm, R. Hoffmann, and N.W. Ashcroft, Atomic and Ionic Radii of Elements 1-96, Chem. A Eur. J., 2016.

  57. M.A.B. Mendes, A.K. Melle, C.A.C. de Souza, C.S. Kiminami, R.D. Cava, C. Bolfarini and W.J.B. Filho, The Effect of Cr Content on the Glass Forming Ability of Fe68-XCrxNb8B24 (x =8,10,12) Alloys, Mater. Res., 2016, 19(suppl 1), p 92-96. https://doi.org/10.1590/1980-5373-mr-2016-0290

    Article  CAS  Google Scholar 

  58. C.S. Kiminami, C.A.C. Souza, L.F. Bonavina, L.R.P. de Andrade Lima, S. Suriñach, M.D. Baró, C. Bolfarini, and W.J. Botta, Partial Crystallization and Corrosion Resistance of Amorphous Fe-Cr-M-B (M=Mo, Nb) Alloys, J. Non. Cryst. Solids, 2010, 356(44-49), p 2651-2657, https://doi.org/10.1016/j.jnoncrysol.2010.04.051.

  59. C.A. Souza, J. May, L. Bolfarini, S. Kuri, M. de Oliveira and C. Kiminami, Influence of Composition and Partial Crystallization on Corrosion Resistance of Amorphous Fe-M-B-Cu (M=Zr, Nb, Mo) Alloys, J. Non. Cryst. Solids, 2001, 284(1-3), p 99-104. https://doi.org/10.1016/S0022-3093(01)00386-6

    Article  CAS  Google Scholar 

  60. S.J. Pang, T. Zhang, K. Asami and A. Inoue, Bulk Glassy Fe-Cr-Mo-C-B Alloys with High Corrosion Resistance, Corros. Sci., 2002, 44(8), p 1847-1856. https://doi.org/10.1016/S0010-938X(02)00002-1

    Article  CAS  Google Scholar 

  61. C.G. Jia, J. Pang, S.P. Pan, Y.J. Zhang, K.B. Kim, J.Y. Qin and W.M. Wang, Tailoring the Corrosion Behavior of Fe-Based Metallic Glasses through Inducing Nb-Triggered Netlike Structure, Corros. Sci., 2019, 147, p 94-107. https://doi.org/10.1016/j.corsci.2018.11.008

    Article  CAS  Google Scholar 

  62. H. Zhang, Z.C. Yan, K.C. Shen, Q. Chen, L.C. Zhang, X.Y. Li and W.M. Wang, Potentiodynamic and Potentiostatic Investigation on the Passivation of Fe Based Glassy Alloys in Alkaline Solution, J. Alloys Compd., 2021, 857, 157573. https://doi.org/10.1016/j.jallcom.2020.157573

    Article  CAS  Google Scholar 

  63. F. Zhai, E. Pineda, M.J. Duarte and D. Crespo, Role of Nb in Glass Formation of Fe-Cr-Mo-C-B-Nb BMGs, J. Alloys Compd., 2014, 604, p 157-163. https://doi.org/10.1016/j.jallcom.2014.03.095

    Article  CAS  Google Scholar 

  64. J.H. Yao, J.Q. Wang and Y. Li, Ductile Fe-Nb-B Bulk Metallic Glass with Ultrahigh Strength, Appl. Phys. Lett., 2008, 92(25), p 251906. https://doi.org/10.1063/1.2949747

    Article  CAS  Google Scholar 

  65. M.J. Duarte, A. Kostka, D. Crespo, J.A. Jimenez, A.-C. Dippel, F.U. Renner and G. Dehm, Kinetics and Crystallization Path of a Fe-Based Metallic Glass Alloy, Acta Mater., 2017, 127, p 341-350. https://doi.org/10.1016/j.actamat.2017.01.031

    Article  CAS  Google Scholar 

  66. P. Marcus and V. Maurice, Atomic Level Characterization in Corrosion Studies, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2017, 375(2098), p 20160414, https://doi.org/10.1098/rsta.2016.0414.

  67. K. Asami, K. Hashimoto, T. Masumoto and S. Shimodaira, ESCA Study of the Passive Film on an Extremely Corrosion-Resistant Amorphous Iron Alloy, Corros. Sci., 1976, 16(12), p 909-914. https://doi.org/10.1016/S0010-938X(76)80010-8

    Article  CAS  Google Scholar 

  68. S. Virtanen, E.M. Moser and H. Böhni, XPS Studies on Passive Films on Amorphous Fe-Cr-(B, P)-C Alloys, Corros. Sci., 1994, 36(2), p 373-384. https://doi.org/10.1016/0010-938X(94)90163-5

    Article  CAS  Google Scholar 

  69. X.-Y. Li, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, Electrochemical and XPS Studies of the Corrosion Behavior of Sputter-Deposited Amorphous Fe-Cr-Ni-Nb Alloys in 6 M HCl, Corros. Sci., 1999, 41(6), p 1095-1118. https://doi.org/10.1016/S0010-938X(98)00174-7

    Article  CAS  Google Scholar 

  70. G.Y. Koga, R.P. Nogueira, V. Roche, A.R. Yavari, A.K. Melle, J. Gallego, C. Bolfarini, C.S. Kiminami and W.J. Botta, Corrosion Properties of Fe-Cr-Nb-B Amorphous Alloys and Coatings, Surf. Coatings Technol., 2014, 254, p 238-243. https://doi.org/10.1016/j.surfcoat.2014.06.022

    Article  CAS  Google Scholar 

  71. C. Suryanarayana and A. Inoue, “Bulk Metallic Glasses, Second Edition,” Bulk Metallic Glasses: Second Edition, CRC Press, 2017, https://doi.org/10.1201/9781315153483.

  72. M. Belkhaouda, L. Bazzi, A. Benlhachemi, R. Salghi, B. Hammouti and S. Kertit, Effect of the Heat Treatment on the Corrosion Behaviour of Amorphous Fe-Cr-P-C-Si Alloy in 0.5M H2SO4, Appl. Surf. Sci., 2006, 252(22), p 7921-7925. https://doi.org/10.1016/j.apsusc.2005.09.063

    Article  CAS  Google Scholar 

  73. S.M. Gravano, S. Torchio, E. Angelini, C. Antonione and M. Baricco, Structural Aspects and the Anodic Behaviour of Fe34Ni36Cr10P14B6 Amorphous Alloy Submitted to Different Heat Treatments, Corros. Sci., 1991, 32(5–6), p 509-519. https://doi.org/10.1016/0010-938X(91)90104-W

    Article  CAS  Google Scholar 

  74. I. Chattoraj, S. Baunack, M. Stoica and A. Gebert, Electrochemical Response of Fe65.5Cr4Mo4Ga4P12 C5B5.5 Bulk Amorphous Alloy in Different Aqueous Media, Mater. Corros., 2004, 55(1), p 36-42. https://doi.org/10.1002/maco.200303693

    Article  CAS  Google Scholar 

  75. F. Marzo, Effect of Irreversible Structural Relaxation on the Electrochemical Behavior of Fe78−xSi13B9Cr(X=3,4,7) Amorphous Alloys, J. Non. Cryst. Solids, 2003, 329(1–3), p 108-114. https://doi.org/10.1016/j.jnoncrysol.2003.08.022

    Article  CAS  Google Scholar 

  76. H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, The Effect of Structural Relaxation on the Passivation Behavior of Amorphous Fe-Cr-W-P-C Alloys, Corros. Sci., 1990, 31, p 343-348. https://doi.org/10.1016/0010-938X(90)90129-S

    Article  CAS  Google Scholar 

  77. G. Li, L. Huang, Y. Dong, G. He, L. Qi, Q. Jing, M. Ma and R. Liu, Corrosion Behavior of Bulk Metallic Glasses in Different Aqueous Solutions, Sci. China Phys. Mech. Astron., 2010, 53(3), p 435-439. https://doi.org/10.1007/s11433-010-0139-5

    Article  CAS  Google Scholar 

  78. M.J. Duarte, A. Kostka, J.A. Jimenez, P. Choi, J. Klemm, D. Crespo, D. Raabe and F.U. Renner, Crystallization, Phase Evolution and Corrosion of Fe-Based Metallic Glasses: An Atomic-Scale Structural and Chemical Characterization Study, Acta Mater., 2014, 71, p 20-30. https://doi.org/10.1016/j.actamat.2014.02.027

    Article  CAS  Google Scholar 

  79. H.X. Li and S. Yi, Corrosion Behaviors of Bulk Metallic Glasses Fe66.7C7.0Si3.3B5.5P8.7Cr2.3Al2.0Mo4.5 Having Different Crystal Volume Fractions, Mater. Chem. Phys., 2008, 112(1), p 305-309, https://doi.org/10.1016/j.matchemphys.2008.05.061.

  80. H.M. Ha and J.H. Payer, Devitrification of Fe-Based Amorphous Metal SAM 1651: A Structural and Compositional Study, Metall. Mater. Trans. A, 2009, 40(11), p 2519-2529. https://doi.org/10.1007/s11661-009-9977-z

    Article  CAS  Google Scholar 

  81. C.A.C. Sousa and C.S. Kiminami, Crystallization and Corrosion Resistance of Amorphous FeCuNbSiB, J. Non. Cryst. Solids, 1997, 219, p 155-159. https://doi.org/10.1016/S0022-3093(97)00323-2

    Article  CAS  Google Scholar 

  82. D. Szewieczek and A. Baron, Electrochemical Corrosion and Its Influence on Magnetic Properties of Fe755Si13.5B9Nb3Cu1 Alloy, J. Mater. Process. Technol., 2005, 164-165, p 940-946, doi:https://doi.org/10.1016/j.jmatprotec.2005.02.084.

  83. C.A.C. Souza, S.E. Kuri, F.S. Politti, J.E. May and C.S. Kiminami, Corrosion Resistance of Amorphous and Polycrystalline FeCuNbSiB Alloys in Sulphuric Acid Solution, J. Non. Cryst. Solids, 1999, 247(1–3), p 69-73. https://doi.org/10.1016/S0022-3093(99)00034-4

    Article  CAS  Google Scholar 

  84. R. Holm, The Contact Resistance. General Theory, Electric Contacts, (Berlin, Heidelberg), Springer Berlin Heidelberg, 1967, p 9-11, doi:https://doi.org/10.1007/978-3-662-06688-1_3.

  85. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24(8), p 981-988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  86. I. Hutchings and P. Shipway, “Tribology: Friction and Wear of Engineering Materials: Second Edition,” Tribology: Friction and Wear of Engineering Materials: Second Edition, 2nd ed., (Butterworth-Heinemann), Elsevier, 2017.

  87. A. Inoue, L. Arnberg, M. Oguchi, U. Backmark, N. Bäckström and T. Masumoto, Preparation of Fe-Cr-Mo-C Amorphous Powders and Microstructure and Mechanical Properties of Their Hot-Pressed Products, Mater. Sci. Eng., 1987, 95, p 101-114. https://doi.org/10.1016/0025-5416(87)90502-7

    Article  CAS  Google Scholar 

  88. K. Miyoshi and D.H. Buckley, Mechanical-Contact-Induced Transformation from the Amorphous to the Partially Crystalline State in Metallic Glass, Thin Solid Films, 1984, 118(3), p 363-373. https://doi.org/10.1016/0040-6090(84)90206-2

    Article  CAS  Google Scholar 

  89. K. Miyoshi and D.H. Buckley, Microstructure and Surface Chemistry of Amorphous Alloys Important to Their Friction and Wear Behavior, Wear, 1986, 110(3–4), p 295-313. https://doi.org/10.1016/0043-1648(86)90105-5

    Article  CAS  Google Scholar 

  90. F.A. de Lucena, C.S. Kiminami, and C. R. M. Afonso, New Compositions of Fe-Co-Nb-B-Y BMG with Wide Supercooled Liquid Range, over 100 K, J. Mater. Res. Technol., Korea Institute of Oriental Medicine, 2020, 9(4), p 9174-9181, https://doi.org/10.1016/j.jmrt.2020.06.035.

  91. G.Y. Koga, T. Ferreira, Y. Guo, D.D. Coimbrão, A.M. Jorge Jr., C.S. Kiminami, C. Bolfarini and W.J. Botta, Challenges in Optimizing the Resistance to Corrosion and Wear of Amorphous Fe-Cr-Nb-B Alloy Containing Crystalline Phases, J. Non. Cryst. Solids, 2021, 555, 120537. https://doi.org/10.1016/j.jnoncrysol.2020.120537

    Article  CAS  Google Scholar 

  92. E.V. Shadrichev and A.E. Ivanov, Relative Wear-Resistance of Single-Phase and Two-Phase Boride Layers, Met. Sci. Heat Treat., 1984, 26(3), p 235-239. https://doi.org/10.1007/BF00703870

    Article  Google Scholar 

  93. A.L. Greer, Partially or Fully Devitrified Alloys for Mechanical Properties, Mater. Sci. Eng. A, 2001, 304–306, p 68-72. https://doi.org/10.1016/S0921-5093(00)01449-0

    Article  Google Scholar 

  94. M. Anis, W.M. Rainforth and H.A. Davies, Wear Behaviour of Rapidly Solidified Fe68Cr18Mo2B12 Alloys, Wear, 1994, 172(2), p 135-145. https://doi.org/10.1016/0043-1648(94)90281-X

    Article  CAS  Google Scholar 

  95. G.R. Khanolkar, M.B. Rauls, J.P. Kelly, O.A. Graeve, A.M. Hodge and V. Eliasson, Shock Wave Response of Iron-Based In Situ Metallic Glass Matrix Composites, Sci. Rep., 2016, 6(1), p 22568. https://doi.org/10.1038/srep22568

    Article  CAS  Google Scholar 

  96. S.F. Guo, L. Liu, N. Li and Y. Li, Fe-Based Bulk Metallic Glass Matrix Composite with Large Plasticity, Scr. Mater., 2010, 62(6), p 329-332. https://doi.org/10.1016/j.scriptamat.2009.10.024

    Article  CAS  Google Scholar 

  97. R.G. Ehl and A.J. Ihde, Faraday’s Electrochemical Laws and the Determination of Equivalent Weights, J. Chem. Educ., 1954, 31(5), p 226, doi:https://doi.org/10.1021/ed031p226.

  98. N. Mahata, A. Banerjee, P.K. Rai, P. Bijalwan, A.S. Pathak, S. Kundu, M. Dutta and K. Mondal, Glassy Blast Furnace Pig Iron and Design of Other Glassy Compositions Using Thermodynamic Calculations, J. Non. Cryst. Solids, 2018, 484, p 95-104. https://doi.org/10.1016/j.jnoncrysol.2018.01.029

    Article  CAS  Google Scholar 

  99. K. Sarkar, P.K. Rai, P. Kumar Katiyar, B. Satapathy, A.S. Pathak, M. Dutta, A. Banerjee and K. Mondal, Composite (Glass + Crystalline) Coatings from Blast Furnace Pig Iron by High Velocity Oxy-Fuel (HVOF) Process and Their Electrochemical Behavior, Surf. Coat. Technol., 2019, 372, p 72-83, https://doi.org/10.1016/j.surfcoat.2019.05.025.

  100. P.K. Rai, D. Naidu, B. Satapathy, K. Sarkar, A.S. Pathak, P. Bijalwan, M. Dutta, A. Banerjee and K. Mondal, Amorphous/Nanocrystalline Composite Coatings Using Blast Furnace Pig Iron Composition by Atmospheric Plasma Spray and Their Electrochemical Response, J. Therm. Spray Technol., 2020, 29(4), p 843-856. https://doi.org/10.1007/s11666-020-00995-x

    Article  CAS  Google Scholar 

  101. T. Xu, Z. Jian, F. Chang, L. Zhuo, M. Shi, M. Zhu, J. Xu, Y. Liu and T. Zhang, Synthesis of Fe 75 Cr 5 (PBC) 20 Bulk Metallic Glasses with a Combination of Desired Merits Using Industrial Ferro-Alloys without High-Purity Materials, J. Alloys Compd., 2017, 699, p 92-97. https://doi.org/10.1016/j.jallcom.2016.12.322

    Article  CAS  Google Scholar 

  102. M. Shi, S. Pang and T. Zhang, Towards Improved Integrated Properties in FeCrPCB Bulk Metallic Glasses by Cr Addition, Intermetallics, 2015, 61, p 16-20. https://doi.org/10.1016/j.intermet.2015.02.010

    Article  CAS  Google Scholar 

  103. A. Kumar, R. Kumar, P. Bijalwan, M. Dutta, A. Banerjee, and T. Laha, Fe-Based Amorphous/Nanocrystalline Composite Coating by Plasma Spraying: Effect of Heat Input on Morphology, Phase Evolution and Mechanical Properties, J. Alloys Compd., Elsevier B.V, 2019, 771, p 827-837, https://doi.org/10.1016/j.jallcom.2018.09.024.

  104. A. Kumar, S.K. Nayak, P. Bijalwan, M. Dutta, A. Banerjee and T. Laha, Mechanical and Corrosion Properties of Plasma-Sprayed Fe-Based Amorphous/Nanocrystalline Composite Coating, Adv. Mater. Process. Technol., 2019, 5(2), p 371-377. https://doi.org/10.1080/2374068X.2019.1598129

    Article  Google Scholar 

  105. P. Bijalwan, A. Kumar, S.K. Nayak, A. Banerjee, M. Dutta and T. Laha, Microstructure and Corrosion Behavior of Fe-Based Amorphous Composite Coatings Developed by Atmospheric Plasma Spraying, J. Alloys Compd., 2019, 796, p 47-54. https://doi.org/10.1016/j.jallcom.2019.05.046

    Article  CAS  Google Scholar 

  106. A. Kumar, S.K. Nayak, K. Sarkar, A. Banerjee, K. Mondal and T. Laha, Investigation of Nano- and Micro-Scale Structural Evolution and Resulting Corrosion Resistance in Plasma Sprayed Fe-Based (Fe-Cr-B-C-P) Amorphous Coatings, Surf. Coatings Technol., 2020, 397, 126058. https://doi.org/10.1016/j.surfcoat.2020.126058

    Article  CAS  Google Scholar 

  107. S.K. Nayak, A. Kumar, K. Sarkar, A. Pathak, A. Banerjee and T. Laha, A Study on the Corrosion Inhibition of Fe-Based Amorphous/Nanocrystalline Coating Synthesized by High-Velocity Oxy-Fuel Spraying in an Extreme Environment, J. Therm. Spray Technol., 2019, 28(7), p 1433-1447. https://doi.org/10.1007/s11666-019-00907-8

    Article  CAS  Google Scholar 

  108. S.K. Nayak, A. Kumar, A. Pathak, A. Banerjee and T. Laha, Multi-Scale Mechanical Properties of Fe-Based Amorphous/Nanocrystalline Composite Coating Synthesized by HVOF Spraying, J. Alloys Compd., 2020, 825, 154120. https://doi.org/10.1016/j.jallcom.2020.154120

    Article  CAS  Google Scholar 

  109. K. Kishitake, H. Era and F. Otsubo, Thermal-Sprayed Fe-10CM3P-7C Amorphous Coatings Possessing Excellent Corrosion Resistance, J. Therm. Spray Technol., 1996, 5(4), p 476-482. https://doi.org/10.1007/BF02645279

    Article  CAS  Google Scholar 

  110. A. Kumar, S.K. Nayak and T. Laha, Comparative Study on Wear and Corrosion Behavior of Plasma Sprayed Fe73Cr2Si11B11C3 and Fe63Cr9P5B16C7 Metallic Glass Composite Coatings, J. Therm. Spray Technol., 2022. https://doi.org/10.1007/s11666-021-01280-1

    Article  Google Scholar 

  111. S.K. Nayak, A. Kumar and T. Laha, Developing an Economical Wear and Corrosion Resistant Fe-Based Metallic Glass Composite Coating by Plasma and HVOF Spraying, J. Therm. Spray Technol., 2021. https://doi.org/10.1007/s11666-021-01277-w

    Article  Google Scholar 

  112. S.F. Guo, J.L. Qiu, P. Yu, S.H. Xie and W. Chen, Fe-Based Bulk Metallic Glasses: Brittle or Ductile? Appl. Phys. Lett. 2014, 105(16), p 161901, https://doi.org/10.1063/1.4899124.

  113. Z.L. Long, C.T. Chang, Y.H. Ding, Y. Shao, P. Zhang, B.L. Shen and A. Inoue, Corrosion Behavior of Fe-Based Ferromagnetic (Fe, Ni)-B-Si-Nb Bulk Glassy Alloys in Aqueous Electrolytes, J. Non. Cryst. Solids, 2008, 354(40–41), p 4609-4613. https://doi.org/10.1016/j.jnoncrysol.2008.06.009

    Article  CAS  Google Scholar 

  114. J. Guo, Z. Gao, X. Ni, D. Li and Z. Lu, Electrochemical Behavior of Bulk Amorphous Steel Fe55M2Cr12Mo10B6C13Y2(M=Ni, Cu, Nb), J. Iron Steel Res. Int., 2010, 17(5), p 69-73. https://doi.org/10.1016/S1006-706X(10)60102-1

    Article  CAS  Google Scholar 

  115. Y. Li, X. Jia, W. Zhang, C. Fang, X. Wang, F. Qin, S. Yamaura and Y. Yokoyama, Effects of Alloying Elements on the Thermal Stability and Corrosion Resistance of an Fe-Based Metallic Glass with Low Glass Transition Temperature, Metall. Mater. Trans. A, 2014, 45(5), p 2393-2398. https://doi.org/10.1007/s11661-013-2071-6

    Article  CAS  Google Scholar 

  116. F. Otsubo, H. Era and K. Kishitake, Formation of Amorphous Fe-Cr-Mo-8P-2C Coatings by the High Velocity Oxy-Fuel Process, J. Therm. Spray Technol., 2000, 9(4), p 494-498. https://doi.org/10.1361/105996300770349700

    Article  CAS  Google Scholar 

  117. K. Kishitake, H. Era and F. Otsubo, Characterization of Plasma Sprayed Fe-10Cr-10Mo-(C, B) Amorphous Coatings, J. Therm. Spray Technol., 1996, 5(2), p 145-153. https://doi.org/10.1007/BF02646428

    Article  CAS  Google Scholar 

  118. F. Otsubo and K. Kishitake, Corrosion Resistance of Fe-16%Cr-30%Mo-(C, B, P) Amorphous Coatings Sprayed by HVOF and APS Processes, Mater. Trans., 2005, 46(1), p 80-83. https://doi.org/10.2320/matertrans.46.80

    Article  CAS  Google Scholar 

  119. K. Kishitake, H. Era and F. Otsubo, Characterization of Plasma Sprayed Fe-17Cr-38Mo-4C Amorphous Coatings Crystallizing at Extremely High Temperature, J. Therm. Spray Technol., 1996, 5(3), p 283-288. https://doi.org/10.1007/BF02645879

    Article  CAS  Google Scholar 

  120. M.-W. Tan, E. Akiyama, A. Kawashima, K. Asami and K. Hashimoto, The Effect of Air Exposure on the Corrosion Behavior of Amorphous Fe-8Cr-Mo-13P-7C Alloys in 1 M HCl, Corros. Sci., 1995, 37(8), p 1289-1301. https://doi.org/10.1016/0010-938X(95)00035-I

    Article  CAS  Google Scholar 

  121. M.-W. Tan, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, The Role of Chromium and Molybdenum in Passivation of Amorphous Fe-Cr-Mo-P-C Alloys in Deaerated 1 M HCl, Corros. Sci., 1996, 38(12), p 2137-2151. https://doi.org/10.1016/S0010-938X(96)00071-6

    Article  CAS  Google Scholar 

  122. M.-W. Tan, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, The Effect of Molybdenum on the Stability of Passive Films Formed on Amorphous Fe-Cr-Mo-P-C Alloys by Potentiostatic Polarization in Deaerated 1 M HCl, Corros. Sci., 1997, 39(3), p 589-603. https://doi.org/10.1016/S0010-938X(96)00148-5

    Article  CAS  Google Scholar 

  123. X. Li, C. Qin, H. Kato, A. Makino, and A. Inoue, Mo Microalloying Effect on the Glass-Forming Ability, Magnetic, Mechanical and Corrosion Properties of (Fe0.76Si0.096B0.084P0.06)100-XMox Bulk Glassy Alloys, J. Alloys Compd., 2011, 509(29), p 7688-7691, https://doi.org/10.1016/j.jallcom.2011.04.081.

  124. B. Bochtler, O. Gross, I. Gallino, and R. Busch, Thermo-Physical Characterization of the Fe67Mo6Ni3.5Cr3.5P12C5.5B2.5 Bulk Metallic Glass Forming Alloy, Acta Mater., 2016, 118, p 129-139, https://doi.org/10.1016/j.actamat.2016.07.031.

  125. J.H. Na, M. Floyd, G. Garrett, M.D. Demetriou, and W.L. Johnson, “Bulk Glass Steel with High Glass Forming Ability,” (United States), 2015, p 6.

  126. G.Y. Koga, R. Schulz, S. Savoie, A.R.C. Nascimento, Y. Drolet, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Microstructure and Wear Behavior of Fe-Based Amorphous HVOF Coatings Produced from Commercial Precursors, Surf. Coatings Technol., Elsevier B.V., 2016, 309, p 938-944, https://doi.org/10.1016/j.surfcoat.2016.10.057.

  127. G.Y. Koga, A.M. Jorge Junior, V. Roche, R.P. Nogueira, R. Schulz, S. Savoie, A.K. Melle, C. Loable, C. Bolfarini, C.S. Kiminami, and W.J. Botta, Production and Corrosion Resistance of Thermally Sprayed Fe-Based Amorphous Coatings from Mechanically Milled Feedstock Powders, Metall. Mater. Trans. A, 2018, 49(10), p 4860-4870, https://doi.org/10.1007/s11661-018-4785-y.

  128. J.E. Berger, A.M. Jorge, G.Y. Koga, V. Roche, C.S. Kiminami, C. Bolfarini and W.J. Botta, Influence of Chromium Concentration and Partial Crystallization on the Corrosion Resistance of FeCrNiB Amorphous Alloys, Mater. Charact., 2021, 179, 111369. https://doi.org/10.1016/j.matchar.2021.111369

    Article  CAS  Google Scholar 

  129. M.J. Duarte, J. Klemm, S.O. Klemm, K.J.J. Mayrhofer, M. Stratmann, S. Borodin, a H. Romero, M. Madinehei, D. Crespo, J. Serrano, S.S. a Gerstl, P.P. Choi, D. Raabe, and F.U. Renner, Element-Resolved Corrosion Analysis of Stainless-Type Glass-Forming Steels, Science, 2013, 341, p 372-376, https://doi.org/10.1126/science.1230081.

  130. G. Koga, L. Otani, A. Silva, V. Roche, R. Nogueira, A. Jorge, C. Bolfarini, C. Kiminami, and W. Botta, Characterization and Corrosion Resistance of Boron-Containing-Austenitic Stainless Steels Produced by Rapid Solidification Techniques, Materials (Basel)., 2018, 11(11), p 2189, https://doi.org/10.3390/ma11112189.

  131. J.E. Berger, R. Schulz, S. Savoie, J. Gallego, C.S. Kiminami, C. Bolfarini, and W.J. Botta, Wear and Corrosion Properties of HVOF Coatings from Superduplex Alloy Modified with Addition of Boron, Surf. Coatings Technol., Elsevier B.V., 2017, 309, p 911-919, https://doi.org/10.1016/j.surfcoat.2016.10.062.

  132. H.-R. Jiang, M.-L. Li, X.-S. Wei, T.-C. Ma, Y. Dong, C.-X. Ying, Z.-Y. Liao and J. Shen, Numerical Investigation of In-Flight Behavior of Fe-Based Amorphous Alloy Particles in AC-HVAF Thermal Spray Process, J. Therm. Spray Technol., 2019, 28(6), p 1146-1159. https://doi.org/10.1007/s11666-019-00889-7

    Article  CAS  Google Scholar 

  133. N. Zeoli, S. Gu and S. Kamnis, Numerical Simulation of In-Flight Particle Oxidation during Thermal Spraying, Comput. Chem. Eng., 2008, 32(7), p 1661-1668. https://doi.org/10.1016/j.compchemeng.2007.08.008

    Article  CAS  Google Scholar 

  134. E. Dongmo, M. Wenzelburger and R. Gadow, Analysis and Optimization of the HVOF Process by Combined Experimental and Numerical Approaches, Surf. Coatings Technol., 2008, 202(18), p 4470-4478. https://doi.org/10.1016/j.surfcoat.2008.04.029

    Article  CAS  Google Scholar 

  135. N.C. Wu, K. Chen, W.H. Sun and J.Q. Wang, Correlation between Particle Size and Porosity of Fe-Based Amorphous Coating, Surf. Eng., 2019, 35(1), p 37-45. https://doi.org/10.1080/02670844.2018.1447782

    Article  CAS  Google Scholar 

  136. H. Zhang, Y. Xie, L. Huang, S. Huang, X. Zheng and G. Chen, Effect of Feedstock Particle Sizes on Wear Resistance of Plasma Sprayed Fe-Based Amorphous Coatings, Surf. Coatings Technol., 2014, 258, p 495-502. https://doi.org/10.1016/j.surfcoat.2014.08.050

    Article  CAS  Google Scholar 

  137. G.Y. Koga, W. Wolf, R. Schulz, S. Savoie, C. Bolfarini, C.S. Kiminami and W.J. Botta, Corrosion and Wear Properties of FeCrMnCoSi HVOF Coatings, Surf. Coatings Technol., 2019, 357, p 993-1003. https://doi.org/10.1016/j.surfcoat.2018.10.101

    Article  CAS  Google Scholar 

  138. M.S. Bakare, K.T. Voisey, K. Chokethawai and D.G. McCartney, Corrosion Behaviour of Crystalline and Amorphous Forms of the Glass Forming Alloy Fe43Cr16Mo16C15B10, J. Alloys Compd., 2012, 527, p 210-218. https://doi.org/10.1016/j.jallcom.2012.02.127

    Article  CAS  Google Scholar 

  139. E. Sadeghimeresht, N. Markocsan and P. Nylén, Microstructural Characteristics and Corrosion Behavior of HVAF- and HVOF-Sprayed Fe-Based Coatings, Surf. Coatings Technol., 2017, 318, p 365-373. https://doi.org/10.1016/j.surfcoat.2016.11.088

    Article  CAS  Google Scholar 

  140. A. Nouri and A. Sola, Metal Particle Shape: A Practical Perspective, Met. Powder Rep., 2018, 73(5), p 276-282. https://doi.org/10.1016/j.mprp.2018.04.001

    Article  Google Scholar 

  141. P. Fauchais, G. Montavon and G. Bertrand, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 56-80. https://doi.org/10.1007/s11666-009-9435-x

    Article  CAS  Google Scholar 

  142. A. Nouri and A. Sola, Powder Morphology in Thermal Spraying, J. Adv. Manuf. Process., 2019. https://doi.org/10.1002/amp2.10020

    Article  Google Scholar 

  143. A. Inoue, T. Masumoto, T. Ekimoto, S. Furukawa, Y. Kuroda and H.S. Chen, Preparation of Fe-, Co-, and Ni-Based Amorphous Alloy Powders by High-Pressure Gas Atomization and Their Structural Relaxation Behavior, Metall. Trans. A, 1988, 19(2), p 235-242. https://doi.org/10.1007/BF02652531

    Article  Google Scholar 

  144. K.L. Alvarez, J.M. Martín, N. Burgos, M. Ipatov, L. Domínguez and J. González, Structural and Magnetic Properties of Amorphous and Nanocrystalline Fe-Si-B-P-Nb-Cu Alloys Produced by Gas Atomization, J. Alloys Compd., 2019, 810, 151754. https://doi.org/10.1016/j.jallcom.2019.151754

    Article  CAS  Google Scholar 

  145. T. Dai and N. Wang, Study on Magnetic Properties and Degradability of Gas Atomization Fe-Based (Fe-Si-B-P) Amorphous Powder, J. Supercond. Nov. Magn., 2019, 32(11), p 3699-3702. https://doi.org/10.1007/s10948-019-05164-y

    Article  CAS  Google Scholar 

  146. N. Ciftci, N. Ellendt, E. Soares Barreto, L. Mädler, and V. Uhlenwinkel, Increasing the Amorphous Yield of {(Fe 0.6 Co 0.4 ) 0.75 B 0.2 Si 0.05} 96 Nb 4 Powders by Hot Gas Atomization, Adv. Powder Technol., 2018, 29(2), p 380-385, https://doi.org/10.1016/j.apt.2017.11.025.

  147. N. Ciftci, N. Ellendt, R. von Bargen, H. Henein, L. Mädler, and V. Uhlenwinkel, Atomization and Characterization of a Glass Forming Alloy {(Fe0.6Co0.4)0.75B0.2Si0.05}96Nb4, J. Non. Cryst. Solids, 2014, 394-395, p 36-42, https://doi.org/10.1016/j.jnoncrysol.2014.03.023.

  148. N. Ciftci, N. Yodoshi, S. Armstrong, L. Mädler and V. Uhlenwinkel, Processing Soft Ferromagnetic Metallic Glasses: On Novel Cooling Strategies in Gas Atomization, Hydrogen Enhancement, and Consolidation, J. Mater. Sci. Technol., 2020, 59, p 26-36. https://doi.org/10.1016/j.jmst.2020.03.077

    Article  Google Scholar 

  149. Y. Shi, W. Lu, W. Sun, S. Zhang, B. Yang and J. Wang, Impact of Gas Pressure on Particle Feature in Fe-Based Amorphous Alloy Powders via Gas Atomization: Simulation and Experiment, J. Mater. Sci. Technol., 2021 https://doi.org/10.1016/j.jmst.2021.06.075

    Article  Google Scholar 

  150. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1-184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  151. F.A. de Lucena, G.Y. Koga, R. Riva, and C.R.M. Afonso, Production and Characterization of Laser Cladding Coating of Fe66Co7Nb4B23 (at.%) Gas-Atomized and Ball-Milled Powders, J. Mater. Res. Technol., 2021, 14, p 2267-2280, https://doi.org/10.1016/j.jmrt.2021.07.087.

  152. E.D. Zanotto and J.C. Mauro, The Glassy State of Matter: Its Definition and Ultimate Fate, J. Non. Cryst. Solids, 2017, 471, p 490-495. https://doi.org/10.1016/j.jnoncrysol.2017.05.019

    Article  CAS  Google Scholar 

  153. B.S. de Oliveira, D.H. Milanez, D.R. Leiva, L.I.L. de Faria, W.J. Botta and C.S. Kiminami, Thermal Spraying Processes and Amorphous Alloys: Macro-Indicators of Patent Activity, Mater. Res., 2017, 20(suppl 1), p 89-95. https://doi.org/10.1590/1980-5373-mr-2017-0416

    Article  Google Scholar 

  154. J.C. Farmer, J.J. Haslam, S.D. Day, T. Lian, C.K. Saw, P.D. Hailey, J.-S. Choi, R.B. Rebak, N. Yang, J.H. Payer, J.H. Perepezko, K. Hildal, E.J. Lavernia, L. Ajdelsztajn, D.J. Branagan, E.J. Buffa, and L.F. Aprigliano, Corrosion Resistance of Thermally Sprayed High-Boron Iron-Based Amorphous-Metal Coatings: Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4, J. Mater. Res., 2007, 22(08), p 2297-2311, https://doi.org/10.1557/jmr.2007.0291.

  155. J. Blink, J. Farmer, J. Choi and C. Saw, Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings, Metall. Mater. Trans. A, 2009, 40(6), p 1344-1354. https://doi.org/10.1007/s11661-009-9830-4

    Article  CAS  Google Scholar 

  156. J. Farmer, J.-S. Choi, C. Saw, J. Haslam, D. Day, P. Hailey, T. Lian, R. Rebak, J. Perepezko, J. Payer, D. Branagan, B. Beardsley, A. D’amato and L. Aprigliano, Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development, Metall. Mater. Trans. A, 2009, 40(6), p 1289-1305. https://doi.org/10.1007/s11661-008-9779-8

    Article  CAS  Google Scholar 

  157. J.C. Farmer, J.-S. Choi, C.-K. Saw, R.H. Rebak, S.D. Day, T. Lian, P.D. Hailey, J.H. Payer, D.J. Branagan, and L.F. Aprigliano, Corrosion Resistance of Amorphous Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4 Coating: A New Criticality Control Material, Nucl. Technol., 2008, 161(2), p 169-189, https://doi.org/10.13182/NT08-A3921.

  158. I.D. Kuchumova, I.S. Batraev, V.Y. Ulianitsky, A.A. Shtertser, K.B. Gerasimov, A. V. Ukhina, N. V. Bulina, I.A. Bataev, G.Y. Koga, Y. Guo, W.J. Botta, H. Kato, T. Wada, B.B. Bokhonov, D. V. Dudina, and A. Moreira Jorge, Formation of Metallic Glass Coatings by Detonation Spraying of a Fe66Cr10Nb5B19 Powder, Metals (Basel)., 2019, 9(8), p 846, https://doi.org/10.3390/met9080846.

  159. I.D. Kuchumova, I.S. Batraev, N.Y. Cherkasova, D.K. Rybin, A. V. Ukhina, W. José Botta, G. Yuuki Koga, and A. Moreira Jorge, The Influence of the O2/C2H2 Ratio on the Structure and Properties of Fe66Cr10Nb5B19 Detonation Coatings, Mater. Today Proc., 2020, 17(3), p 701-704, https://doi.org/10.1016/j.matpr.2019.12.098.

  160. I.D. Kuchumova, I.S. Batraev, A. V. Ukhina, T.A. Borisenko, U.E. Bulanova, V.Y. Ulianitsky, D. V. Dudina, V.S. Shikalov, V.F. Kosarev, I.A. Bataev, G.Y. Koga, and A. Moreira Jorge, Processing of Fe-Based Alloys by Detonation Spraying and Spark Plasma Sintering, J. Therm. Spray Technol., 2021, 30(6), p 1692-1702, doi:https://doi.org/10.1007/s11666-021-01237-4.

  161. I.D. Kuchumova, M.A. Eryomina, N.V. Lyalina, D.V. Dudina, I.S. Batraev, V.Y. Ulianitsky, A.A. Shtertser, N.Y. Cherkasova, A.A. Ruktuev, A.V. Ukhina, T.A. Borisenko, G.Y. Koga, C.S. Kiminami and A.M. Jorge, Structural Features and Corrosion Resistance of Fe66Cr10Nb5B19 Metallic Glass Coatings Obtained by Detonation Spraying, J. Mater. Eng. Perform., 2021. https://doi.org/10.1007/s11665-021-06143-y

    Article  Google Scholar 

  162. I.D. Kuchumova, N.Y. Cherkasova, I.S. Batraev, V.S. Shikalov, A.V. Ukhina, G.Y. Koga and A.M. Jorge, Wear-Resistant Fe-Based Metallic Glass-Al2O3 Composite Coatings Produced by Detonation Spraying, J. Therm. Spray Technol., 2022 https://doi.org/10.1007/s11666-021-01299-4

    Article  Google Scholar 

  163. D.A. Santana, G.Y. Koga, W. Wolf, I.A. Bataev, A.A. Ruktuev, C. Bolfarini, C.S. Kiminami, W.J. Botta and A.M. Jorge Jr., Wear-Resistant Boride Reinforced Steel Coatings Produced by Non-Vacuum Electron Beam Cladding, Surf. Coatings Technol., 2020, 386, 125466. https://doi.org/10.1016/j.surfcoat.2020.125466

    Article  CAS  Google Scholar 

  164. J. Davis, “Handbook of Thermal Spray Technology,” 2004.

  165. G. Zepon, N. Ellendt, V. Uhlenwinkel, and C. Bolfarini, Solidification Sequence of Spray-Formed Steels, Metall. Mater. Trans. A, Springer US, 2016, 47(2), p 842-851, https://doi.org/10.1007/s11661-015-3253-1.

  166. S.D. Zhang, W.L. Zhang, S.G. Wang, X.J. Gu and J.Q. Wang, Characterisation of Three-Dimensional Porosity in an Fe-Based Amorphous Coating and Its Correlation with Corrosion Behaviour, Corros. Sci., 2015, 93, p 211-221. https://doi.org/10.1016/j.corsci.2015.01.022

    Article  CAS  Google Scholar 

  167. G.Y. Koga, G. Zepon, L.S. Santos, C. Bolfarini, C.S. Kiminami and W.J. Botta, Wear Resistance of Boron-Modified Supermartensitic Stainless Steel Coatings Produced by High-Velocity Oxygen Fuel Process, J. Therm. Spray Technol., 2019, 28(8), p 2003-2014. https://doi.org/10.1007/s11666-019-00961-2

    Article  CAS  Google Scholar 

  168. J. Soyama, T.P. Lopes, G. Zepon, C.S. Kiminami, W.J. Botta and C. Bolfarini, Wear Resistant Duplex Stainless Steels Produced by Spray Forming, Met. Mater. Int., 2019, 25(2), p 456-464. https://doi.org/10.1007/s12540-018-0202-8

    Article  CAS  Google Scholar 

  169. I.A. Bataev, A.A. Bataev, M.G. Golkovski, D.S. Krivizhenko, A.A. Losinskaya and O.G. Lenivtseva, Structure of Surface Layers Produced by Non-Vacuum Electron Beam Boriding, Appl. Surf. Sci., 2013, 284, p 472-481. https://doi.org/10.1016/j.apsusc.2013.07.121

    Article  CAS  Google Scholar 

  170. I.A. Bataev, A.A. Bataev, M.G. Golkovsky, A.Y. Teplykh, V.G. Burov and S.V. Veselov, Non-Vacuum Electron-Beam Boriding of Low-Carbon Steel, Surf. Coatings Technol., 2012, 207, p 245-253. https://doi.org/10.1016/j.surfcoat.2012.06.081

    Article  CAS  Google Scholar 

  171. Y. Wang, S.L. Jiang, Y.G. Zheng, W. Ke, W.H. Sun and J.Q. Wang, Effect of Porosity Sealing Treatments on the Corrosion Resistance of High-Velocity Oxy-Fuel (HVOF)-Sprayed Fe-Based Amorphous Metallic Coatings, Surf. Coatings Technol., 2011, 206(6), p 1307-1318. https://doi.org/10.1016/j.surfcoat.2011.08.045

    Article  CAS  Google Scholar 

  172. J. Jiao, Q. Luo, X. Wei, Y. Wang and J. Shen, Influence of Sealing Treatment on the Corrosion Resistance of Fe-Based Amorphous Coatings in HCl Solution, J. Alloys Compd., 2017, 714, p 356-362. https://doi.org/10.1016/j.jallcom.2017.04.179

    Article  CAS  Google Scholar 

  173. C. Zhang, K.C. Chan, Y. Wu and L. Liu, Pitting Initiation in Fe-Based Amorphous Coatings, Acta Mater., 2012, 60(10), p 4152-4159. https://doi.org/10.1016/j.actamat.2012.04.005

    Article  CAS  Google Scholar 

  174. D.D. Coimbrão, G. Zepon, G.Y. Koga, D.A.G. Pérez, F.H.P. de Almeida, V. Roche, J.-C. Lepretre, A.M. Jorge, C.S. Kiminami, C. Bolfarini, A. Inoue and W.J. Botta, Corrosion Properties of Amorphous, Partially, and Fully Crystallized Fe68Cr8Mo4Nb4B16 Alloy, J. Alloys Compd., 2020, 826, p 154123. https://doi.org/10.1016/j.jallcom.2020.154123

    Article  CAS  Google Scholar 

  175. A. Inoue, F.L. Kong, S.L. Zhu and F. Al-Marzouki, Peculiarities and Usefulness of Multicomponent Bulk Metallic Alloys, J. Alloys Compd., 2017, 707, p 12-19. https://doi.org/10.1016/j.jallcom.2016.11.228

    Article  CAS  Google Scholar 

  176. J. Ding, A. Inoue, Y. Han, F.L. Kong, S.L. Zhu, Z. Wang, E. Shalaan and F. Al-Marzouki, High Entropy Effect on Structure and Properties of (Fe Co, Ni, Cr)-B Amorphous Alloys, J. Alloys Compd., 2017, 696, p 345-352. https://doi.org/10.1016/j.jallcom.2016.11.223

    Article  CAS  Google Scholar 

  177. F. Wang, A. Inoue, F.L. Kong, Y. Han, S.L. Zhu, E. Shalaan and F. Al-Marouki, Formation, Thermal Stability and Mechanical Properties of High Entropy (Fe Co, Ni, Cr, Mo)-B Amorphous Alloys, J. Alloys Compd., 2018, 732, p 637-645. https://doi.org/10.1016/j.jallcom.2017.10.227

    Article  CAS  Google Scholar 

  178. F. Wang, A. Inoue, F.L. Kong, S.L. Zhu, E. Shalaan, F. Al-Marzouki, W.J. Botta, C.S. Kiminami, Y.P. Ivanov, and A.L. Greer, Formation, Stability and Ultrahigh Strength of Novel Nanostructured Alloys by Partial Crystallization of High-Entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86-89B11-14 Amorphous Phase, Acta Mater., 2019, 170, p 50-61, https://doi.org/10.1016/j.actamat.2019.03.019.

  179. A. Inoue, F.L. Kong, S.L. Zhu, B.L. Shen, A. Churyumov and W.J. Botta, Formation, Structure and Properties of Pseudo-High Entropy Clustered Bulk Metallic Glasses, J. Alloys Compd., 2020, 820, 153164. https://doi.org/10.1016/j.jallcom.2019.153164

    Article  CAS  Google Scholar 

  180. G.Y. Koga, D. Travessa, G. Zepon, D.D. Coimbrão, A.M. Jorge, J.E. Berger, V. Roche, J.-C. Lepretre, C. Bolfarini, C.S. Kiminami, F. Wang, S.L. Zhu, A. Inoue and W.J. Botta, Corrosion Resistance of Pseudo-High Entropy Fe-Containing Amorphous Alloys in Chloride-Rich Media, J. Alloys Compd., 2021, 884, 161090. https://doi.org/10.1016/j.jallcom.2021.161090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Guilherme Yuuki Koga gratefully acknowledges the financial support of FAPESP (Post-Doctorate Grant No. 17/09237-4 and Scientific Initiation Grant No. 12/10631-5), CNPq (Master Grant No. 153269/2013-8 and Universal Grant No. 407651/2021-7), and CAPES-BRAFITEC (Exchange Grant No. 2778/11-4). All authors are grateful for the financial support granted by FAPESP (Thematic Project Grant Nos. 13/05987-8 and 05/59594-0). The authors also thank the Laboratory of Structural Characterization (LCE) and the Center for Characterization and Development of Materials (CCDM) of the Federal University of São Carlos for the characterization facilities access. The Hydro-Quebec (HVOF and Wear facilities, Canada), Lavrentyev Institute of Hydrodynamics SB RAS (Detonation Spraying facility, Russia), Novosibirsk State Technical University (Electron Beam Cladding facility, Russia), Université Grenoble Alpes (Corrosion-LEPMI and Processing-SIMaP facilities, France), Petrobras SA (funding, Brazil), and Villares Metals SA (supply of stainless steels, Brazil) are acknowledged. This work results from the collaboration of our group with different researchers over the past decade, whose publications were used as the cornerstone of this review. We are thus thankful for the fruitful discussion and exchange consolidated with Dr. Robert Schulz (Hydro-Quebec), Prof. Ricardo Pereira Nogueira and Prof. Virginie Roche (LEPMI), Prof. Dina Dudina (Lavrentyev Institute of Hydrodynamics), Prof. Ivan Bataev (Novosibirsk State Technical University), Prof. Juno Gallego (UNESP), Prof. Akihisa Inoue (Tianjin University/King Abdulaziz University) and Dr. Alain Reza Yavari (SIMaP). We also thank the valuable effort and contribution of previous students that have worked on Fe-Cr-Nb-B alloys in our group: M.Sc. Ana Karla Melle, Dr. Alexandre Nascimento, M.Sc. Diego Santana, Dr. Tales Ferreira, M.Sc. Diego Coimbrão, and Dr. Yaofeng Guo; we also thank Ms. Ivanna Kuchumova, who conducted her Ph.D. on Fe-Cr-Nb-B coatings in the Lavrentyev Institute of Hydrodynamics SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Yuuki Koga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on High Entropy Alloy and Bulk Metallic Glass Coatings. The issue was organized by Dr. Andrew S.M. Ang, Swinburne University of Technology; Prof. B.S. Murty, Indian Institute of Technology Hyderabad; Distinguished Prof. Jien-Wei Yeh, National Tsing Hua University; Prof. Paul Munroe, University of New South Wales; Distinguished Prof. Christopher C. Berndt, Swinburne University of Technology. The issue organizers were mentored by Emeritus Prof. S. Ranganathan, Indian Institute of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koga, G.Y., Bolfarini, C., Kiminami, C.S. et al. An Overview of Thermally Sprayed Fe-Cr-Nb-B Metallic Glass Coatings: From the Alloy Development to the Coating’s Performance Against Corrosion and Wear. J Therm Spray Tech 31, 923–955 (2022). https://doi.org/10.1007/s11666-022-01371-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01371-7

Keywords

Navigation