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Abstract Thermal spraying processes include complex

nonlinear interdependencies among process parameters, in-

flight particle properties and coating structure. Therefore,

employing computer-aided methods is essential to quantify

these complex relationships and subsequently enhance the

process reproducibility. Typically, classic modeling

approaches are pursued to understand these interactions.

While these approaches are able to capture very complex

systems, the increasingly sophisticated models have the

drawback of requiring considerable calculation time. In this

study, two different Machine Learning (ML) methods,

Residual Neural Network (ResNet) and Support Vector

Machine (SVM), were used to estimate the in-flight particle

properties in plasma spraying in a much faster manner. To

this end, data sets comprising the process parameters such

as electrical current and gas flow as well as the in-flight

particle velocities, temperatures and positions have been

extracted from a CFD simulation of the plasma jet. Fur-

thermore, two Design of Experiments (DOE) methods,

Central Composite Design (CCD) and Latin Hypercube

Sampling (LHS), have been employed to cover a set of

representative process parameters for training the ML

models. The results show that the developed ML models

are able to estimate the trends of particle properties pre-

cisely and dramatically faster than the computation-inten-

sive CFD simulations.

Keywords atmospheric plasma spraying � CFD
simulation � computational speed-up � design of

experiments � in-flight particle properties � machine

learning � metamodel

Abbreviations/Nomenclature

ANN Artificial Neural Network

CCD Central Composite Design

CFD Computational Fluid Dynamics

LHS Latin Hypercube Sampling

MAPE Mean Absolute Percentage Error

ML Machine Learning

ResNet Residual Neural Network

SVM Support Vector Machine

b Bias parameter, SVM

bðlÞ Bias vector, ResNet

C Constant, SVM

e Square error for a single training example,

ResNet

etr Mean square error for training set, ResNet

f ðxÞ True values, SVM

gðxÞ Prediction values, SVM

kðxi; xjÞ Kernel function, SVM

l Index of layer, ResNet

L Number of layers, ResNet

N Number of data points/particles

ni Number of test data points of simulation i

nN Number of neurons per hidden layer, ResNet

nO Number of outputs, ResNet

P Number of predictors, SVM

pi General prediction values, SVM or ResNet

Rsq R-squared error

t Mean of general true values, SVM or ResNet

ti General true values, SVM or ResNet
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Tp In-flight particle temperature

Tp Mean in-flight particle temperature over all

simulations (‘‘grandmean’’)

Tp;i Mean in-flight particle temperature of simulation

i

Tp;i;j In-flight particle temperature of particle j of

simulation i

vp In-flight particle velocity

w Normal vector, SVM

W ðlÞ Weights matrix, ResNet

xð0Þ Vector of input values, ResNet

xðLÞ Vector of prediction values, ResNet

xp In-flight particle x-coordinate

y Vector of target values, ResNet

zp In-flight particle z-coordinate

aia�i Lagrange multipliers, SVM

c Kernel scale

dðlÞ Local error, ResNet

e Upper error bound, SVM

g Learning rate, ResNet

n; n� Slack variables, SVM

r1; r2 Activation functions, ResNet

r
0
1; r

0
2

Derivatives of act. functions, ResNet

/ðxÞ Mapping function, SVM

X Input variable space, SVM
~X Feature space, SVM

Introduction

The coating process in Thermal Spraying (TS) is associated

with many complex physical phenomena. Due to the large

number of parameters involved in this coating technology

as well as the nonlinear relationships between these

parameters, precise control and optimization of the TS

processes is a lengthy and expensive undertaking. Not all

of the influencing parameters can be controlled, because on

the one hand the effect of many variables on the coating

process is not quantitatively measurable, and on the other

hand the technical possibilities for an adequate process

monitoring are still lacking. Hence, simulation and mod-

eling approaches like the Computational Fluid Dynamics

(CFD) are often employed to capture the involved complex

physical phenomena. Although CFD offers high potential

for understanding the sub-processes of the TS coating

technology, the tradeoff between the accuracy of the model

and the computational cost has been always a challenge in

CFD problems. The simulation of the particle free-jet in a

multi-arc plasma spraying process, which is the focus of

this study, requires elevated computational cost, while not

sacrificing the accuracy of the model(Ref 1).

A promising possibility for substitution of the compu-

tationally expensive CFD simulations in plasma spraying is

to create a Digital Twin of the process using Machine

Learning (ML) algorithms. Digital Twin is referred to as a

virtual and computerized representation of a physical sys-

tem in real space including the data and information that

ties the virtual and real systems together (Ref 2). This

digital replication occurs mainly by integration of the

artificial intelligence methods, with the aim of system

optimization, monitoring as well as prognostics (Ref 3).

This leads subsequently to greater efficiency, accuracy and

economic benefits for the considered system (Ref 4). The

majority of prior research works have used experimental

data sets to create Digital Twins for the TS process variants

with the objective of predicting the particle properties or

controlling the process parameters (Ref 5, 6). There are

only few studies in the literature that used simulation data

sets for training ML models in TS (Ref 7). The motivation

of using simulation results is the opportunity to cover a

broad range of process parameters, while providing that

much experimental data is barely possible. This results not

only in enhancement of the prediction accuracy of the

model, but also in speeding up computations dramatically.

The goal of the present study is to take the primary steps

toward building up a fast Digital Twin for the plasma

spraying process to predict the in-flight particle properties

based on various input process parameters using ML

methods. To this end, several sets of process parameters

and particle properties are acquired from CFD simulations

of the plasma jet. The data preparation is carried out using

two different design of experiments (DOE) methods,

namely Central Composite Design (CCD) and Latin

Hypercube Sampling (LHS). Finally, the prepared data are

fed into a Residual Neural Network (ResNet) and a Support

Vector Machine (SVM) to predict the particle properties.

The results of the different ML models and DOE methods

are then compared with each other in terms of the calcu-

lated prediction accuracy. Due to the randomness of the

particle behavior caused by particle collisions and the

turbulence of the plasma flow, a precise prediction of the

properties of each single particle cannot be expected with

the ML methods at hand. However, the accurate prediction

of average particle properties serves as a key performance

indicator in plasma spraying and can significantly help, for

example, in investigating the interrelationships between

process parameters and coating properties. Hence, the

objective in this work is to accurately predict the average

particle behavior depending on different sets of process

parameters.
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Numerical Modeling

The simulation data sets of this study are obtained from a

former numerical model, simulating the plasma spraying

process of a three-cathode plasma generator performed at

the Surface Engineering Institute. To resolve different

physical phenomena and reduce the model complexity of

the entire system, the plasma spraying process is divided

into two sub-processes that are modeled separately: the

plasma generator model and the plasma jet model. In the

plasma generator model, the flow characteristics at the

plasma generator outlet including the temperature and

velocity profiles as well as the profiles of turbulent kinetic

energy and turbulent eddy dissipation were determined. By

using these determined profiles as a boundary condition at

the inlet of the plasma jet model, the two sub-models are

coupled. A two-equation Shear Stress Transport (SST)

turbulence model was used to simulate the turbulence

inside the plasma generator as well as in the plasma jet. A

detailed description of the numerical modeling used in this

study can be found in (Ref 8, 9). For an accurate descrip-

tion of the plasma-particle interaction in plasma spraying,

the influences of the plasma on the particles and vice versa

were considered in the plasma jet model in a two-way

coupled manner (Ref 10). Furthermore, a validation of the

plasma generator and the plasma jet models was conducted

by comparing numerical results to experimental data (Ref

11).

Figure 1 shows the simulated particle trajectories and

their temperatures inside the plasma jet exemplary for one

simulation. For each simulation, a virtual clipping plane is

defined to export the particle properties at specific stand-off

distances. The particle properties include the in-flight

particle coordinates on the clipping plane, the velocities

and the temperatures. The simulation models were created

in ANSYS CFX version 20.2 (ANSYS, Inc., Canonsburg,

USA). For each simulation, the calculated number of par-

ticle trajectories was set to 2000. Aluminium oxide was

used as the feedstock material for the simulations. Further

details regarding the procedure of preparing the simulation

data are described in the next section.

Data Preparation

Simulations often involve larger numbers of variables

compared to physical experiments. It is necessary to find a

set of input parameters, namely the design matrix, so that

potentially the best-fitting predictive model can be con-

structed on the resulting data sets formed by the design

matrix (Ref 12). Furthermore, this allows understanding the

cause-and-effect relationships in the system by changing

the designed input variables and observing the resulting

changes in the system output (Ref 13). Therefore, two

different DOE methods, CCD and LHS, were employed in

this study to cover a set of representative input process

parameters for the simulations. The parameter setup for the

CCD and LHS methods is given in Table 1. Totally six

different process parameters were considered for the DOE

approach: primary gas flow (Argon), electric current,

Fig. 1 Exemplary simulated

particle trajectories and their

temperatures in plasma jet
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carrier gas flow, powder feed rate, particle size distribution

at the injection point and stand-off distance. The particle

sizes were divided into three different fractions to cover the

broad spectrum of the possible particle size distributions in

plasma spraying. The DOE methods were implemented in

the MATLAB environment and were linked with the batch

job scheduler of the simulation runs to create an automated

data preparation pipeline. Overall, 45 simulations were

carried out for the CCD data sets and another 45 simula-

tions for the LHS data sets. In the following, both DOE

methods and the structure of the data for the simulations

are briefly described.

Central Composite Design (CCD)

CCD is based on a two-level full or fractional factorial

design, which has additionally 2k (k is the number of

independent variables) points between the axes and a set of

repeated points at the centroid (N0) (Ref 14). Figure 2

shows a geometric view of a CCD for a two-factor full

factorial design. CCD is used widely in constructing sec-

ond-order response surface models (Ref 15).

Random errors are inevitable in physical experiments,

and the output may be different even with the same

experimental settings. In the contrary, the computer

experiments are deterministic and multiple trials result in

identical outputs. Hence, carrying out several runs at the

centroid is only meaningful in physical experiments (Ref

12). In this study, the number of computational experi-

ments was set to 45, which corresponds to a CCD with 6-

factor fractional design (2k�1 + 2k + N0).

Latin Hypercube Sampling (LHS)

LHS is one of the most popular space-filling designs that

aims at reducing the variance of sample mean (Ref 16). It is

a stratified sampling technique, which divides the multi-

dimensional experimental domain into N strata of equal

marginal probability, where N is the number of sample

points, in a way that each stratum contains only one sample

point along each space dimension and then samples once

from each stratum (Ref 12).

The maximin distance criteria can be imposed as an

optimality criterion for construction of LHS to further

decrease the variance of the sample mean. A maximin LHS

maximizes the minimum distance between each pair of

experimental points within the experimental domain, see

Fig. 3. This optimality criterion ensures that the experi-

mental points are spread out uniformly through the domain

and therefore, no point lies too far away from a design

point (Ref 17). This results in an enhancement of the

prediction accuracy of the constructed model. LHS is a

very suitable and powerful DOE technique for computer

experimentation, which can serve various numbers of runs

and input variables. In this study, the same number of runs

as the CCD method was used for the LHS method to ensure

the comparability of the results.

Structure of Simulation Data

As mentioned earlier, for each of the DOE methods

introduced in the above ‘‘Central Composite Design

(CCD)’’ and ‘‘Latin Hypercube Sampling (LHS)’’ sections,

45 simulations are performed, respectively, with different

input process parameters, see Table 1. For instance, the

simulation data sets gathered from the LHS method for the

parameters primary gas flow, electric current, carrier gas

flow, powder feed rate, particle size distribution and stand-

off distance, respectively, are:

1. 40.36 SLPM, 461.6 A, 6.39 SLPM, 28.8 g/min, -35

?15 lm, 126 mm

2. 40.36 SLPM, 532.9 A, 5.72 SLPM, 15.6 g/min, -35

?15 lm, 153 mm

3. 41.37 SLPM, 473.8 A, 4.04 SLPM, 12.0 g/min, -35

?15 lm, 169 mm

Table 1 Parameter setup for the DOE methods

Parameter [unit] Interval

Primary gas flow, SLPM 40-60

Electric current, A 400-540

Carrier gas flow, SLPM 3.5-7

Powder feed rate, g/min 10-30

Particle size distribution, lm -35 ?15; -55 ?35; -75 ?55

Stand-off distance, mm 100-180

Fig. 2 Geometric view of central composite design for k = 2 factors
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..

.

45. 59.87 SLPM, 470.3 A, 4.04 SLPM, 18.0 g/min, -75

?55 lm, 144 mm

The CCD simulation data are also structured into 45

simulations. As it is evident from the above structure,

within each of the 45 CCD or LHS simulations, only the

particle size can vary in the specified range and the five

other process parameters are kept constant. The outputs of

the simulations are the in-flight particle properties of the

2000 simulated particle trajectories per simulation,

respectively. However, regarding the different process

parameters within each simulation, not all of the 2000

simulated particle trajectories can reach the specified stand-

off distance. Hence, the exact number of output data per

simulation for the 45 CCD or LHS simulations is not the

same and can vary between 1500 and 2000 particle tra-

jectories. The inputs and outputs of each simulation are

provided with indices to be able to assign the particles of

each simulation for the ML models.

Machine Learning Algorithms

The DOE methods provide the representative simulation

data sets for training the ML models that are SVM and

ResNet. The inputs of the prediction models are the process

parameters listed in Table 1. The outputs are the particle

properties including the in-flight particle temperatures

Tp [K] and velocities vp [m/s] as well as the in-flight par-

ticle x-coordinates xp [m] and z-coordinates zp [m] at

specific stand-off distances on the virtual substrate (clip-

ping plane).

Due to the collisions of the particles and the turbulence

of the plasma flow, even particles of nearly the same size

can have different coordinates in the plasma jet and thus,

vary greatly in temperature and velocity. Hence, it can be

barely expected that the ML models could predict single

particle properties with high accuracy, but the average

particle properties should be reproducible with a suffi-

ciently small error.

The results from the LHS and CCD methods were each

partitioned into one training data set and one test data set.

From each of the respective 45 simulations, 75% of the

data are used as training data and the remaining 25% as test

data. As described in the previous section, the number of

particles per simulation may differ and thus the overall

number of particles in the training and test data sets for the

CCD and LHS methods is different. The training data for

CCD contain 64,858 particles and the test data include

21,612 particles, while these numbers amount to 64,728

and 21,566 for the LHS, respectively. The training and test

data used for the two ML models were kept identical. Even

though both the SVM and ResNet are trained and tested

with the whole training and test data out of the 45 simu-

lations respectively, the allocation of the particles to each

simulation is still known by use of the indices mentioned in

‘‘Structure of Simulation Data’’ section as data labels. This

is utilized in the evaluation of the results in ‘‘Results and

Discussion’’ section. In the following, the SVM and

ResNet algorithms used in this study are described.

Support Vector Machine (SVM)

The SVM theory introduced by Vapnik (Ref 18) has faced

dramatic attention in statistical learning theory and has

been increasingly applied by researchers in various fields,

where the TS forms no exception (Ref 19, 20). SVM is a

supervised-learning algorithm that uses structural risk

minimization and a symmetrical loss function, which

equally penalizes high and low errors. An important

property of the SVM regression is that its computational

complexity does not depend on the dimension of the input

Fig. 3 Transformation of a 2D

LHS (left) to a maximin LHS

(right)
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space. Furthermore, it has great generalization capability,

with high prediction accuracy (Ref 21).

The goal of linear SVM regression is to find an

approximated hyperplane for the true model f in the form

of:

g xð Þ ¼ w;/ xð Þh i þ b ðEq 1Þ

where w is the normal vector of g, / is a mapping function,

which could initially be considered as identity function,

and b is a bias parameter. The predicted values from g

should have a bounded deviation no more than e from the

true values f xð Þ, i.e.,
g xð Þ � f xð Þj j � e ðEq 2Þ

The distance between the hyperplane g and the farthest

point away is called margin and it is proportional to 1
jjwjj.

The boundary of a maximal margin is called a support

vector, see Fig. 4. In addition, g should be maximally flat,

i.e. jjwjj should be as small as possible and the margin as

large as possible (Ref 22).

In practical cases, this kind of hyperplane is not guar-

anteed to exist. In order to cope with otherwise infeasible

constraints, the slack variables n and n� are introduced to

construct a soft margin hyperplane. Consequently, the

constrained optimization problem could be formulated as

(Ref 23):

Minimize :
1

2
jjwjj2 þ C

X

i

ni þ n�i
� �

ðEq 3Þ

Subject to : g xð Þ � f xð Þ� eþ n�i ðEq 3:1Þ

f xð Þ � g xð Þ� eþ ni ðEq 3:2Þ
ni; n

�
i � 0 8 i ¼ 1; . . .; Xj j ðEq 3:3Þ

where X denotes the input variable space and C[ 0 is a

constant that determines the penalties for training errors. A

closed form representation of the regression hyperplane g

could be derived from the dual form of the optimization

problem above:

g xð Þ ¼
X

i

a�i � ai
� �

xi; xh i þ b ðEq 4Þ

where ai, a�i are Lagrange multipliers (Ref 23).

The already introduced linear form of SVM regression

could be transformed into a nonlinear feature space via a

nonlinear mapping / : X ! ~X. The dot product in ~X could

be expressed by the kernel function k xi; xj
� �

¼
/ðxiÞ;/ðxjÞ
� �

: With the implicit mapping of kernel func-

tion k, it is possible to directly compute the hyperplane g in

the nonlinear feature space. With this so-called kernel trick,

the final form of the approximated hyperplane could be

expressed as:

g xð Þ ¼
X

i

a�i � ai
� �

k xi; xð Þ þ b ðEq 5Þ

where the corresponding constrained optimization problem

is now formulated in the transformed feature space ~X
instead of in the original input variable space X, thanks to
the implicit mapping / and the kernel function k (Ref 24).

One advantage of SVM is that although the training

involves nonlinear optimization, the corresponding objec-

tive function is convex, and therefore, any local solution

represents also a global optimum (Ref 25).

In this study, the implementation of the SVM regression

algorithm was carried out using the Statistics and Machine

Learning Toolbox of MATLAB. In order to make the

inputs and targets insensitive to the scales and magnitudes

on which they are processed, a preprocessing step has been

carried out to standardize the training data sets. The stan-

dardization was done based on the so-called z-score

method, in which the corresponding standardized data have

a mean value of zero and a standard deviation of one.

Hence, the shape of the original data set is retained.

Four single-output SVM models, corresponding to the

four outputs, for each of the two DOE methods (LHS and

CCD) were developed. For training the regression models,

Gaussian kernels based on Eq 6 were employed, where c
represents the kernel scale.

k xi; xj
� �

¼ exp �
xi � xj
�� ��2

2c2

 !
ðEq 6Þ

The training of the SVM models has been conducted

with different kernel scales as given in Table 2 to choose

the best prediction accuracy. The term P in Table 2 denotes

the number of predictors, which is equal to P ¼ 6 in this

study. Furthermore, a 10-fold cross-validation was used to
Fig. 4 Illustration of the support vectors, margins and slack variables

in SVM regression
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analyze the level of generalization and prevent possible

overfitting.

Residual Neural Network (ResNet)

The classical Artificial Neural Network (ANN) is a mul-

tilayer perceptron represented by a mathematical function

which maps input values to output values. For an ANN

with L layers and a vector x 0ð Þ containing input values, the

output vector x Lð Þ representing the prediction of the ANN is

determined by:

x

�
L
�
¼ r2

�
W

�
L
�T
r1�

W

�
L�1
�T
r1
�
� � � r1

�
W

�
1
�T
x

�
0
�
þ b

�
1
��

þ � � �
�
þ b

�
L�1
��

þ b

�
L
��

ðEq 7Þ

where W lð Þ and b lð Þ, l ¼ 1; . . .; L, are weights matrices and

bias vectors, respectively, r1 is a nonlinear activation

function, e.g., hyperbolic tangent or ReLU, and r2 is an

activation function which may differ from r1 and which

may be linear. For a given target vector y, the goal is to

minimize the deviation of the output vector x Lð Þ from y.

This deviation is often measured by a loss function, where

for regression problems the square error

e ¼ y� xðLÞ
�� ��2

2
ðEq 8Þ

is commonly used. Note that Eq 8 states the error for a

single training example, i.e., for one target vector y. For the

computation of the mean square error of a training set with

N entries, all errors are summed up and divided by N. To

minimize the error, suitable weights matrices W lð Þ and bias

vectors b lð Þ, l ¼ 1; . . .; L, have to be determined. This is

done by applying an iterative training process using

backpropagation as described below.

In practice, the prediction x Lð Þ of an ANN in Eq 7 is

computed by forward propagation, which successively

predicts the output vector x lð Þ of each layer l ¼ 1; . . .; L of

the network by:

x lð Þ ¼
r1 W lð ÞT x l�1ð Þ þ b lð Þ
� 	

; l ¼ 1; . . .; L� 1;

r2 W lð ÞT x l�1ð Þ þ b lð Þ
� 	

; l ¼ L:

8
<

: ðEq 9Þ

ResNets are a particular class of ANNs designed to

improve the training of deep networks (Ref 26). The

ResNet used in this work is fully connected without skip

connections. The only difference in the computation of the

ResNet output compared with a standard ANN is the

addition of the output x l�1ð Þ of the previous layer to the

right-hand side of the forward propagation formula in Eq 9

for l ¼ 1; . . .; L� 1. Here, a ResNet is used where the

number of neurons per hidden layer is set to be equal to the

number of features (six in this setting, see Table 1). This is

denoted as simplified ResNet (SimResNet). Its properties

have been discussed, for instance, in (Ref 27, 28). For the

SimResNet, the prediction or forward propagation formula

reads:

x lð Þ ¼
x l�1ð Þ þ r1 W lð ÞT x l�1ð Þ þ b lð Þ

� 	
; l ¼ 1; . . .; L� 1;

r2 W lð ÞT x l�1ð Þ þ b lð Þ
� 	

; l ¼ L:

8
<

:

ðEq 10Þ

The forward propagation of Eq 10 is the first step in one

iteration of the training algorithm. Subsequently, the

weights w
lð Þ
ij and the biases b

lð Þ
i are updated for the next

iteration by backpropagation, i.e., by adding

Dw lð Þ
ij ¼ �gx l�1ð Þ

i d lð Þ
j and Db lð Þ

i ¼ �gd lð Þ
i ðEq 11Þ

respectively, where g is the learning rate,

d Lð Þ
j ¼ 2 x

Lð Þ
j � yj

� 	
� r0

2

XnN

i¼1

w
Lð Þ
ij x

L�1ð Þ
i

� 	
þ b

Lð Þ
j

 !

ðEq 12Þ

and

d lð Þ
j ¼

XnO

k¼1

d Lð Þ
k w

Lð Þ
jk þ

XL�1

m¼lþ1

XnN

k¼1

d mð Þ
k w

mð Þ
jk

 !

� r0

1

XnN

i¼1

w
lð Þ
ij x

l�1ð Þ
i

� 	
þ b

lð Þ
j

 !
ðEq 13Þ

for l ¼ 1; . . .;L� 1. Here, nO and nN denote the number of

outputs (predictions) and the number of neurons per hidden

layer, respectively. The formulas of Eq 11-13 are derived

using the optimality condition of the minimization problem

of the error given in Eq 8. With the updated weights

matrices and bias vectors, the next training iteration starts

with the forward propagation of Eq 10.

The iterative process of forward- and backpropagations

described above is applied to a set of training data. For

each input value of this set, Eq 10–13 are computed

Table 2 Kernel scales of different Gaussian kernels applied for

training the SVM models

Kernel type Kernel scale

Fine Gaussian c ¼
ffiffiffiffi
P
32

q

Medium Gaussian c ¼
ffiffiffi
P
2

q

Coarse Gaussian c ¼
ffiffiffiffiffiffi
8P

p
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iteratively to update the weights and biases until a mean

error regarding the whole training set is sufficiently small.

For this study, a MATLAB code developed at the

Institute for Geometry and Applied Mathematics is used

for training and testing ResNets for the CCD and LHS data

sets. The hyperparameters, which have to be fixed prior to

the training, are g ¼ 0:01 (learning rate), L ¼ 11 (ten

hidden layers), hyperbolic tangent as activation function r1
and the identity function as activation function r2. The
weights and biases of the ResNet are initialized by Glorot

(also called Xavier) initialization (Ref 29). Analogously to

the SVM model, the input and target data are standardized

for each physical quantity individually by the z-score

method. In each iteration of the subsequent training, all

input data are forward propagated at once (full batching).

The final ResNet outputs for the test data are scaled back to

their particular physical range. Two multi-output ResNets

are trained: one for the CCD data and one for the LHS data.

The structure of the applied ResNets is visualized in Fig. 5,

which in addition illustrates the forward propagation pro-

cedure of the ResNet (Eq 10) compared to a standard ANN

(Eq 9).

Results and Discussion

In this chapter, the results of the ML models are presented

and discussed. For each data set produced by different

experimental designs, separate prediction models are

trained. Then, the target values on the virtual substrate,

which are the particle temperatures, velocities and posi-

tions (x and z-coordinates) are tested by the corresponding

predefined test data sets. Hence, in the following only the

results of the test data and not the training data for different

ML models and DOE methods are presented and discussed.

Due to the data labeling described in ‘‘Machine Learn-

ing Algorithms’’ section, the assignment of the particles to

their particular simulation is known. Hence, for a qualita-

tive comparison of ML and simulation results, the average

particle behavior per simulation can be investigated.

Exemplarily, the mean particle temperatures Tp;i per sim-

ulation i 2 1; 45½ � are computed by

Tp;i ¼
1

ni

Xni

j¼1

Tp;i;j ðEq 14Þ

where ni denotes the number of test particles of simulation

i and Tp;i;j the particle temperature of particle j of

Fig. 5 Structure of the applied ResNet and its forward propagation procedure to compute the output vector x 11ð Þ with comparison to a standard

ANN
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simulation i. The mean value over all 45 simulations is then

computed by

Tp ¼
1

45

X45

i¼1

Tp;i ðEq 15Þ

and denoted by ‘‘grandmean’’ in the following. The means

and grandmeans of the particle velocities and positions are

computed analogously.

For a quantitative evaluation of the ML results, two

statistical measures are considered. To evaluate the pre-

diction accuracy of the single particle properties, the mean

absolute percentage error (MAPE) is calculated. Given N

data points, the MAPE is defined by

MAPE ¼ 1

N

XN

i¼1

ti � pi
ti

����

���� ðEq 16Þ

with true values ti and predictions pi. Furthermore, the R-

squared value, for N data points, true values ti with mean t

and predictions pi defined by

Rsq ¼ 1�
PN

i¼1 ti � pið Þ2
PN

i¼1 ti � tð Þ2
ðEq 17Þ

is calculated to evaluate the prediction accuracy of the

average particle properties.

Fig. 6 Results of the mean particle temperatures per simulation for SVM model from (a) CCD and (b) LHS data sets

Fig. 7 Results of the mean particle velocities per simulation for SVM model from (a) CCD and (b) LHS data sets
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SVM Results

Figure 6 shows the results of the mean particle tempera-

tures Tp;i per simulation i 2 1; 45½ �, see Eq 14, from the

(a) CCD and (b) LHS data sets. The mean values predicted

by the SVM model, shown in red, are denoted with ‘‘Mean

SVM’’, while the corresponding true values from the

simulation model, displayed in blue, are labeled with

‘‘Mean Sim.’’. The grandmeans according to Eq 15 are also

plotted in Fig. 6.

In the same way, the results of the mean predicted

particle velocities from the (a) CCD and (b) LHS data sets

are depicted in Fig. 7. Figures 6 and 7 demonstrate that the

developed metamodels have high accuracy in predicting

the mean in-flight particle temperatures and velocities from

the input process parameters. Furthermore, it is observed

that the developed SVM models have slightly better per-

formance in predicting the particle properties with higher

temperatures and velocities than the lower ones. In other

words, in cases where the particles penetrated deeply into

the plasma jet, thus resulting in higher temperatures and

velocities, the models could find better relationships

between the input process parameters and the particle

properties. This has been observed for both CCD and LHS

data sets in case of the SVM metamodels.

The predicted and true values of the single particle

velocities exemplarily from the LHS data sets are shown in

Fig. 8. For a clear presentation, only 250 data points from

the total 45 simulations are randomly selected. It is evident

that the metamodel can replicate the trend of the particle

velocities in the plasma jet. The prediction of the mean

particle velocities and temperatures is more accurate than

the prediction of the single particle properties. As men-

tioned earlier, this can be explained with the stochastic

nature of the plasma spraying process and the turbulence of

the plasma flow, which makes it difficult to predict the

behavior of each single particle as it depends on many

factors that have influence on each other.

The statistical values MAPE (Eq 16) and R-squared

(Eq 17) for prediction of single and average particle

properties by SVM model from different DOE methods are

given in Table 3. While the performance of the SVM

model in terms of prediction accuracy of average particle

properties is the same for CCD and LHS data sets, the

results of the single particle properties shown in Table 3

indicate a slight improvement in prediction accuracy in

case of the LHS experimental design in comparison with

the CCD method. This confirms the suitability of the LHS

for computational experiments.

Figure 9 shows the distribution of the predicted particle

coordinates of the SVM model from LHS data sets

exemplarily for one simulation. It is clear that the predic-

tions of the single particle coordinates are much less

accurate than the particle velocities and temperatures. As

previously mentioned, this is due to the fact that the

behavior of single particles is to some extent random in a

plasma spraying process, while the essence of ML is to

learn and predict regular data. In contrast, the SVM model

predicts the mean particle coordinates per simulation more

accurately with R-squared values of 0.86 and 0.88 for x and

z-coordinates, respectively. The accurate prediction of the

mean particle coordinates can be used as a tool to find the

position of the maximum particle intensity in the free-jet

and consequently e.g. to adjust the injection settings or to

position a particle diagnostic device (Ref 30).

The average prediction time of the SVM metamodels for

the predefined test data sets was calculated to be about

Fig. 8 Exemplary trend of the predicted particle velocities of SVM

model from LHS data sets

Table 3 Statistical values for prediction of single and average particle properties by SVM model from different DOE methods

Statistic parameter MAPE R-squared

Property Single particle temperature Single particle velocity Mean particle temperature Mean particle velocity

CCD 19.78% 22.75% 0.82 0.97

LHS 18.49% 21.11% 0.82 0.97
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4.2 s, which is dramatically faster than one CFD simulation

of the plasma jet with an average calculation time of 3

hours.

Neural Network Results

The results of the ResNet model for mean particle tem-

peratures from the (a) CCD and (b) LHS data sets are

illustrated in Fig. 10. Likewise, the predicted mean particle

velocities per simulation from the (a) CCD and (b) LHS

data sets are depicted in Fig. 11. It is evident, that the

ResNet model has replicated the mean particle tempera-

tures and velocities with high accuracy. Furthermore, it is

observed that the ResNet model, in contrast to SVM model,

can predict the lower range of the particle properties as

good as the upper range. Hence, the model grandmeans

show a better agreement with the grandmeans of the sim-

ulation than in the SVM case.

The prediction accuracy of the ResNet models in terms

of MAPE and R-squared for single and average particle

properties from both experimental designs is given in

Table 4. In agreement with the SVM results, the ResNet

model also shows higher accuracy for the LHS experi-

mental design. Furthermore, the comparison of the model

accuracies given in Tables 3 and 4 demonstrates that

overall the ResNet model shows an enhancement in accu-

racy regarding the prediction of single and average particle

properties.

Figure 12 illustrates the results of the mean particle

x-coordinates per simulation from the (a) CCD and

(b) LHS data sets. The ResNet model shows high accuracy

in prediction of mean particle coordinates with the

R-squared value of 0.99 for predicted x- and z-coordinates.

Figure 13 depicts the training error of the ResNet model

for both the CCD and LHS data sets over 1,000 iterations,

for each iteration computed by the mean square error

etr ¼
1

N

XN

i¼1

ti � pið Þ2Tpþ ti � pið Þ2vpþ ti � pið Þ2xpþ ti � pið Þ2zp
h i

;

ðEq 18Þ

cf. Eq 8, where ti and pi denote standardized true and

predicted values, respectively, N is the number of particles

in the training data set and the indices Tp; vp; xp; zp denote

for which quantity the particular squared difference is

computed. It is evident that the training error out of the

LHS data sets is slightly lower compared to the CCD data

sets, demonstrating the suitability of LHS for computa-

tional experiments.

Fig. 9 Exemplary distribution of the particle coordinates of SVM

model from LHS data sets for one simulation

Fig. 10 Results of the mean particle temperatures per simulation for ResNet model from (a) CCD and (b) LHS data sets
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The computation time for the ResNet prediction, i.e., the

forward propagation, for the predefined test data sets is

about 0.01 s, which again is a significant decrease com-

pared with the average simulation time of 3 hours.

Conclusions and Outlook

The aim of this study was to take the primary steps towards

creating a fast Digital Twin for the plasma spraying process to

predict the in-flight particle properties based on input process

Fig. 11 Results of the mean particle velocities per simulation for ResNet model from (a) CCD and (b) LHS data sets

Table 4 Statistical values for prediction of single and average particle properties by ResNet model from different DOE methods

Statistic parameter MAPE R-squared

Property Single particle temperature Single particle velocity Mean particle temperature Mean particle velocity

CCD 19.68% 21.88% 0.99 0.99

LHS 18.36% 20.45% 0.99 0.99

Fig. 12 Results of the mean particle x-coordinates per simulation for ResNet model from (a) CCD and (b) LHS data sets
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parameters. The data sets for training theMLmodels have been

acquired from a CFD model of the plasma jet. Central Com-

posite Design (CCD) and Latin Hypercube Sampling (LHS)

have been employed to cover a set of representative process

parameters with reducing the number of tests, while selecting

the most valuable sample data. The developed metamodels,

namelyResidualNeuralNetwork (ResNet) and SupportVector

Machine (SVM), are able to replicate the average particle

properties with high accuracy, while reducing the computa-

tional cost dramatically.Theaverage computational timeofone

plasma jet simulation is about three hours, while the average

prediction time of the metamodels for the predefined test data

sets is between0.01and4.2 seconds.The followingconclusions

can be drawn from the presented results:

• Demonstrating the suitability of the SVM and ResNet

metamodels in combination of the CCD and LHS

methods for prediction of particle properties in plasma

spraying

• Substitution of computationally expensive CFD simu-

lations for ML models with dramatic decrease in

calculation time

• Accurate prediction of the mean particle temperatures,

velocities and coordinates by SVM and ResNet based

on various input process parameters

• Minor increase in prediction accuracy of single particle

properties in case of using LHS method for data

preparation compared to CCD

• Enhancement in accuracy regarding the prediction of

single and average particle properties by ResNet

compared to SVM

The results showed that the average particle properties

could be predicted by themetamodels muchmore accurately

than the behavior of single particles. This phenomenon is

expected, since the plasma spraying is a stochastic process

that involves many influencing factors. Thus, the behavior of

single particles is much more random in comparison to

average particle behavior. The results of the metamodels

from the LHS data sets showed a minor enhancement in

terms of the prediction accuracy, which confirmed the suit-

ability of space-filling designs for computation experiments.

For a more accurate prediction of the behavior of single

particles, the concept of physics-informed neural networks

(PINNs) (Ref 31) could be applied. This incorporates the

outputs of the ResNet into the system of partial differential

equations (PDEs) underlying the simulations. In the spirit

of discovering ‘‘hidden fluid mechanics’’ (Ref 32), it could

be possible to significantly improve the prediction of single

particles even through only a selection of the correspond-

ing PDEs. This would finally lead to a compromise in

computational cost between the fast ML predictions in this

work and the time-consuming simulations.

Future studies could additionally validate the results of

the metamodels by carrying out experimental in-flight

particle diagnostics. Moreover, the developed models in

the context of this study can provide a good starting point

for creating the complementary concept of Digital Shadow

for plasma spraying by combining further reduced models

and experimental data analytics of the process chain.
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