Skip to main content
Log in

Microstructural and Mechanical Investigations in the Solution Annealing Heat Treatment of AlMo0.5NbTa0.5TiZr Refractory High-Entropy Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper reports the effect of the solution annealing heat treatment process on the microstructure evolution, hardness changes, and creep behavior of high-entropy refractory alloy (RHEA) AlMo0.5NbTa0.5TiZr. Solution annealing was performed on the as-cast samples in the temperature range (1400-1550) °C for 24 h. Observations showed that the alloy consists of a dendritic structure such that a dual body-centered cubic (BCC)/B2 matrix (dendritic region) is surrounded by Al-Zr-rich intermetallic phases (inter-dendritic region). The significant tendency of Zr in respect of separation from the matrix was found as the main reason for the causing thermal instability. The results showed that with the increase in heat treatment temperature, the volume fraction of inter-dendritic phases decreases and causes a decrease in hardness. It is also the microstructure of the alloy adjacent to the creep indentation process verified that no significant phase deformation takes place in the area beneath the indenter face; while, an obvious phase compression besides the indenter edge was evident for severe shear stresses at this area. Using the constitutive equations, the stress exponent and activation energy of the creep were determined as ~ 141 and 1233 kJ/mol, respectively. The abnormal value of stress exponent was attributed to the lattice distortion, nano-scaled structure, ordered B2 phase, and Al-Zr intermetallic phase, all restricting the dislocation glide in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E.J. Pickering and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61(3), p 183–202.

    Article  CAS  Google Scholar 

  2. I. Florea, R.M. Florea, O. Balţatescu, V. Soare, R. Chelariu, and I. Carcea, High entropy alloys, J. Optoelectron. Adv. Mater., 2013, 15, p 761–767.

    CAS  Google Scholar 

  3. R. Kozak, A. Sologubenko, and W. Steurer, Single-Phase High-Entropy Alloys–An Overview, Z. Krist. Cryst. Mater., 2015, 230(1), p 55–68.

    Article  CAS  Google Scholar 

  4. M.H. Tsai, Physical Properties of High Entropy Alloys, Entropy, 2013, 15(12), p 5338–5345.

    Article  CAS  Google Scholar 

  5. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  6. S.J.C.S. Ranganathan, Alloyed Pleasures: Multimetallic Cocktails, Curr. Sci., 2003, 85(5), p 1404–1406.

    Google Scholar 

  7. J.W. Yeh, Recent Progress in High Entropy Alloys, Ann. Chim. Sci. Mat., 2006, 31, p 633–648.

    Article  CAS  Google Scholar 

  8. Z. Lyu, C. Lee, S.Y. Wang, X. Fan, J.W. Yeh, and P.K. Liaw, Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review, Metall. Mater. Trans. A, 2019, 50(1), p 1–28.

    Article  CAS  Google Scholar 

  9. M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, and T. Nakano, Novel TiNbTaZrMo High-Entropy Alloys for Metallic Biomaterials, Scr. Mater., 2017, 129, p 65–68.

    Article  CAS  Google Scholar 

  10. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Nanocrystalline CoCrFeNiCuAl High-Entropy Solid Solution Synthesized by Mechanical Alloying, J. Alloys Compd., 2009, 485(1–2), p L31–L34.

    Article  CAS  Google Scholar 

  11. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495(1), p 33–38.

    Article  CAS  Google Scholar 

  12. O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, Development and Exploration of Refractory High Entropy Alloys—A Review, J. Mater. Res., 2018, 33(19), p 3092–3128.

    Article  CAS  Google Scholar 

  13. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and Mechanical Properties of Refractory MoNbHfZrTi High-Entropy Alloy, Mater. Des., 2015, 81, p 87–94.

    Article  CAS  Google Scholar 

  14. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and Mechanical Properties of Refractory High Entropy (Mo0.5NbHf0.5ZrTi) BCC/M5Si3 In-Situ Compound, J. Alloys Compd., 2016, 660, p 197–203.

    Article  CAS  Google Scholar 

  15. H. Chen, A. Kauffmann, S. Laube, I.C. Choi, R. Schwaiger, Y. Huang, and K. Lichtenberg et al., Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys, Metall. Mater. Trans. A, 2018, 49(3), p 772–781.

    Article  CAS  Google Scholar 

  16. N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky, and S.V. Zherebtsov, Precipitation-Strengthened Refractory Al0.5CrNbTi2V0.5 High Entropy Alloy, Mater. Lett., 2017, 188, p 162–164.

    Article  CAS  Google Scholar 

  17. Y. Zhang, High-Entropy Materials: Advances and Applications, CRC Press, Boca Raton, 2023.

    Book  Google Scholar 

  18. B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier, Phase Equilibria, Microstructure, and High Temperature Oxidation Resistance of Novel Refractory High-Entropy Alloys, J. Alloys Compd., 2015, 624, p 270–278.

    Article  CAS  Google Scholar 

  19. C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, and J.W. Yeh, Effect of Al Addition on Mechanical Properties and Microstructure of Refractory AlxHfNbTaTiZr Alloys, J. Alloys Compd., 2015, 624, p 100–107.

    Article  CAS  Google Scholar 

  20. H. Wang, W. Chen, Z. Fu, C. Chu, Z. Tian, Z. Jiang, and H. Wen, Lightweight Ti-Zr-Nb-Al-V Refractory High-Entropy Alloys with Superior Strength-Ductility Synergy and Corrosion Resistance, Int. J. Refract Met. Hard Mater., 2023, 116, p 106331.

    Article  CAS  Google Scholar 

  21. J. Brechtl, R. Feng, P.K. Liaw, B. Beausir, H. Jaber, T. Lebedkina, and M. Lebyodkin, Mesoscopic-Scale Complexity in Macroscopically-Uniform Plastic Flow of an Al0.3CoCrFeNi High-Entropy Alloy, Acta Mater., 2023, 242, p 118445.

    Article  CAS  Google Scholar 

  22. C. Cao, J. Fu, T. Tong, Y. Hao, P. Gu, H. Hao, and L. Peng, Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy, Entropy, 2018, 20(12), p 960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.E. Karantzalis, D. Sioulas, A. Poulia, C. Mathiou, and E. Georgatis, A First Approach on the Assessment of the Creep Behavior of MoTaNbVxTi High Entropy Alloys by Indentation Testing, SN Appl. Sci., 2020, 2(5), p 1–10.

    Article  Google Scholar 

  24. Y. Ma, Y.H. Feng, T.T. Debela, G.J. Peng, and T.H. Zhang, Nanoindentation Study on the Creep Characteristics of High-Entropy Alloy Films: Fcc Versus Bcc Structures, Int. J. Refract Met. Hard Mater., 2016, 54, p 395–400.

    Article  CAS  Google Scholar 

  25. S.G. Ma, Creep Resistance and Strain-Rate Sensitivity of a CoCrFeNiAl0.3 High-Entropy Alloy by Nanoindentation, Mater. Res. Express, 2019, 6(12), p 126508.

    Article  CAS  Google Scholar 

  26. M. Sadeghilaridjani, S. Muskeri, M. Pole, and S. Mukherjee, High-Temperature Nano-indentation Creep of Reduced Activity High Entropy Alloys Based on 4-5-6 Elemental Palette, Entropy, 2020, 22(2), p 230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O.N. Senkov, C. Woodward, and D.B. Miracle, Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys, JOM, 2014, 66(10), p 2030–2042.

    Article  CAS  Google Scholar 

  28. O.N. Senkov, S.V. Senkova, and C.J.A.M. Woodward, Effect of Aluminum on the Microstructure and Properties of Two Refractory High-Entropy Alloys, Acta Mater., 2014, 68, p 214–228.

    Article  CAS  Google Scholar 

  29. P.S. Ocaño, S.G. Fries, I. Lopez-Galilea, R.D. Kamachali, J. Roik, and L.A. Jácome, The AlMo0.5NbTa0.5TiZr Refractory High Entropy Superalloy: Experimental Findings and Comparison with Calculations Using the CALPHAD Method, Mater. Des., 2022, 217, p 110593.

    Article  Google Scholar 

  30. J.K. Jensen, Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr, The Ohio State University, Columbus, 2017.

    Google Scholar 

  31. D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, and T.-J. Li, A Novel Series of Refractory High-Entropy Alloys Ti2ZrHf0.5VNbx with High Specific Yield Strength and Good Ductility, Acta Metall. Sin. (English Letters), 2019, 32, p 925–931.

    Article  CAS  Google Scholar 

  32. Z. Zarei, M. Zohrevand, A. Momeni, S. Sadeghpour, and M. Somani, Effect of Heat Treatment Regime on Microstructure and Phase Evolution of AlMo0.5NbTa0.5TiZr Refractory High Entropy Alloy, J. Alloys Compd., 2023, 949, p 169818.

    Article  CAS  Google Scholar 

  33. J. Zhang, C. Gadelmeier, S. Sen, R. Wang, X. Zhang, Y. Zhong, U. Glatzel, B. Grabowski, G. Wilde, and S.V. Divinski, Zr Diffusion in BCC Refractory High Entropy Alloys: A Case of ‘Non-Sluggish’diffusion Behavior, Acta Mater., 2022, 233, p 117970.

    Article  CAS  Google Scholar 

  34. H.U. Prasanna and K.R. Udupa, Indentation Creep Studies to Evaluate the Mechanical Properties of Stainless Steel Welds, Aust. J. Mech. Eng., 2016, 14(1), p 39–43.

    Article  Google Scholar 

  35. D. Matschkal-Amberger, M. Kolb, S. Neumeier, S. Gao, A. Hartmaier, K. Durst, and M. Göken, New Flat-Punch Indentation Creep Testing Approach for Characterizing the Local Creep Properties at High Temperatures, Mater. Des., 2019, 183, p 108090.

    Article  CAS  Google Scholar 

  36. O.N. Senkov, D. Isheim, D.N. Seidman, and A.L. Pilchak, Development of a Refractory High Entropy Superalloy, Entropy, 2016, 18(3), p 102.

    Article  Google Scholar 

  37. R. Gupta and B.S.S. Daniel, Impression Creep Behaviour of Ultrasonically Processed In-Situ Al3Ti Reinforced Aluminium Composite, Mater. Sci. Eng. A, 2018, 733, p 257–266.

    Article  CAS  Google Scholar 

  38. L. Zhang, P. Yu, H. Cheng, H. Zhang, H. Diao, Y. Shi, and B. Chen, Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy, Metall. Mater. Trans. A, 2016, 47(12), p 5871–5875.

    Article  CAS  Google Scholar 

  39. H. Rouault-Rogez, M. Dupeux, and M. Ignat, High Temperature Tensile Creep of CMSX-2 Nickel Base Superalloy Single Crystals, Acta Metall. Mater., 1994, 42(9), p 3137–3148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Omidvar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanalinezhad, M., Omidvar, H. & Farzadi, A. Microstructural and Mechanical Investigations in the Solution Annealing Heat Treatment of AlMo0.5NbTa0.5TiZr Refractory High-Entropy Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09480-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09480-w

Keywords

Navigation