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Austenite stainless steel of type 304 is one of the most difficult materials to process. During the machining
process, parts easily generate higher surface residual stress in cutting direction (CD) and production costs.
To solve the problem, a multi-objective optimization method that combined Dung Beetle Optimizer-Back
Propagation Neural Network (DBO-BPNN) and Improved Particle Swarm Optimization (IPSO) algorithm
was adopted. Firstly, BPNN, Genetic Algorithm-Back Propagation Neural Network (GA-BPNN) and DBO-
BPNN were established to map the nonlinear relationship between surface residual stress in CD and
turning parameters. Secondly, a dataset of surface residual stress in CD and material removal rate under
different turning parameters was obtained through finite element method (FEM) turning simulation. The
dataset was applied into neural network to establish a nonlinear mapping relationship between turning
parameters and surface residual stress in CD. The turning parameters are used as variables, the surface
residual stress in CD and material removal rate are applied as objective functions. The optimal Pareto
solution set of the surface residual stress in CD and material removal rate was acquired by combining DBO-
BPNN and IPSO. Finally, turning experiments were designed to verify the accuracy of the turning simu-
lation. The study shows that the surface residual stress in CD decreased by 38.47%, and the material
removal rate increased by 91.69%.

Keywords 304 stainless steel, dung beetle optimizer algorithm,
improved particle swarm optimization algorithm,
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1. Introduction

Austenite stainless steel of type 304 is one of the most
widely used chromium-nickel stainless steels due to the
excellent corrosion resistance (Ref 1). Surface residual stress

is inevitably generated during material processing (Ref 2-4).
The excessive residual stress will lead to corrosion and fatigue
cracking of 304 stainless steel parts (Ref 5, 6), thus reducing the
service life of the parts (Ref 7-10). Therefore, reducing residual
stress is crucial to improving the service life of parts.
Furthermore, the material removal rate is affected by turning
speed, turning depth and feeds (Ref 11). Selecting suitable ma-
chining parameters will effectively decrease residual stress in
parts and improve material removal rate, thus extending the
service life of parts and reducing production costs (Ref 12).

The optimization of turning process parameters has been
extensively studied. Mahdavinejad et al. (Ref 13) optimized the
304 stainless steel turning parameters. The optimized param-
eters decrease the surface roughness of 304 stainless steel parts
and increase the tool service life. Years later, Taguchi-based
gray correlation analysis was adopted by varghese (Ref 14) to
optimize machining parameters. The optimization resulted in a
reduction in cutting forces, surface roughness and chip
reduction factor. In addition, numerous investigators have
optimized turning parameters to improve productivity. Mirmo-
hammadsadeghi et al. (Ref 15) used a non-dominated ranking
genetic algorithm for multi-objective optimization of turning
process parameters. Provide reliable reference turning process
parameters for improving productivity. Zhou et al. (Ref 16)
developed a genetic gradient boosting regression tree (GA-
GBRT) algorithm to optimize the turning parameters. It
enhanced turning efficiency. Su et al. (Ref 12) applied the
Taguchi method to design turning experiments and developed a
gray correlation degree regression model based on response
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surface methodology(RSM). The optimization method
achieved a trade-off between cutting quality, productivity, and
energy consumption. Alajmi et al. (Ref 17) proposed a machine
learning method using an Adaptive Neuro-Fuzzy Inference
System-Quantum Particle Swarm Optimization Algorithm
(ANFIS-QPSO) to predict turning surface roughness values
of AISI 304 stainless steel. The results show the method can
ensure high accuracy in predicting the surface roughness values
of the turning process. However, little research has been studied
on optimizing turning parameters (especially tool parameters)
to achieve both minimum residual stress and maximum material
removal rate.

Numerous investigators have combined neural networks and
particle swarm optimization algorithms (PSO) and applied them
to the optimization of machining parameters. Jafarian et al. (Ref
18) optimized the surface roughness, tool life, and cutting force
in the turning process using artificial neural network and PSO
algorithm. The combination of GA and PSO provides a more
accurate prediction of the effect of each parameter on tool life,
surface roughness and cutting forces. Later, a new PSO
algorithm was proposed by Wang (Ref 19) to solve mixed-
variable optimization problems (MVOP), which can handle
both continuous and discrete decision variables. The overall
efficiency of the system was enhanced. Mohammadi et al. (Ref
20) optimized the parameters of the arc welding process using a
PSO algorithm to reduce the tensile residual stress in 304
stainless steel butt-welded plates with 4-15 mm thicknesses.
Zhou et al. (Ref 21) optimized the process parameters for
marine diesel engine block hole system machining employing
an IPSO algorithm, which improved the diesel engine’s
operational efficiency. The combination of rough set and PSO
algorithm was employed to distinguish images by Zhang (Ref
22). The algorithm enhanced the sharpness of image edges,
enriched the texture details of the image, and preserved the
information in the smooth areas of the image. Moreover,
several investigators have studied the welding process.
Moghaddam et al. (Ref 23) took the heat-affected zone and
weld geometry as targets to optimize the machining parameters
and joint geometry by applying an artificial neural network and
PSO algorithm. The optimal process parameters reduce the
energy consumption by 11.4% and increase weld bead integrity
as well as tensile strength by 9.07 and 1.48%, respectively.
Kahhal et al. (Ref 24) performed a multi-objective optimization
of the mechanical properties of AH12 1050 aluminum alloy
friction-stir-welding by combining the response surface method
with a multi-objective PSO algorithm. The method improved
the material’s strength and hardness. However, few studies have
applied neural networks and PSO to optimize turning param-
eters, especially tool parameters, while aiming for the minimum
residual stress and maximum material removal rate.

The metal turning process is more complex, with high
temperature, large deformation, large strain rate and other
complex factors. Residual stress has an impact on the service
life and material removal rate affects production costs. Opti-
mizing the turning parameters is vital to reduce residual stress
and increase material removal rate. Reasonable turning param-
eters can reduce the surface residual stress of parts, improve
material removal rate, thereby reducing production costs and
extending the service life of parts. Production costs are affected
by production efficiency, and production efficiency and residual
stress are affected by turning parameters (Ref 25-27). Turning
speed and turning depth have a significant impact on surface
residual stress and production efficiency. Although some

research has been conducted to optimize turning speed, turning
depth, and feed rate for machining quality and production cost
of turning 304 stainless steels, there has been less emphasis on
simultaneously optimizing turning speed, turning depth, tool
rake angle, tool relief angle, and turning edge radius. Therefore,
this paper proposes a multi-objective optimization method that
combines DBO-BPNN and IPSO to optimize the above
parameters simultaneously to achieve the dual objectives of
minimizing surface residual stress and maximizing material
removal rate. The dung beetle optimization algorithm (DBO)
(Ref 28) has the advantages of fast convergence speed and high
prediction accuracy than others. Combining with back-propa-
gation neural network (BPNN), it can effectively establish the
nonlinear mapping relationship between turning process param-
eters and surface residual stress. The improved particle swarm
optimization (IPSO) algorithm can realize the multi-objective
optimization problem effectively.

2. Multi-objective Optimization Model

2.1 Mathematical Model of Multi-Objective Optimization

The surface residual stress in CD and material removal rate
of turning 304 stainless steels were used as the objectives to
optimize the turning parameters. The mathematical model of
the optimization problem is shown in Eq 1. Equation 2
represents the material removal rate.

H ¼ v; h; e; f ; r½ �
f1 Hð Þ ¼ min R1 Hð Þð Þ
f2 Hð Þ ¼ max R2 Hð Þð Þ
H 2 X

8
>><

>>:

ðEq 1Þ

R2 Hð Þ ¼ v� h� 10�3 ðEq 2Þ

where H ¼ v; h; e; f ; r½ � represents the turning parameter,
v; h; e; f and r denote the turning speed, turning depth, tool
front angle, tool back angle and tool radius, respectively. The
feasible domain set X indicates the settable parameters of the
turning process; R1 Hð Þ and R2 Hð Þ are the surface residual
stress in CD and material removal rate under the condition of
turning parameter H, respectively. The objective functions are
both f1 and f2.

2.2 Neural Network

2.2.1 BPNN. Finite element method (FEM) of turning
simulation is time-consuming and laborious to obtain surface
residual stress in CD under different turning parameters. This
paper applies BPNN to predict the residual stress of 304
stainless steel under different turning parameters.

Traditional BPNN takes a long time to train with the slow
convergence speed. The BPNN is sensitive to the initial
weights and thresholds and may get trapped in locally optimal
solutions (Ref 29). Therefore, an optimization algorithm is
needed to optimize the weights and thresholds of BPNN to
avoid falling into a locally optimal solution.

2.2.2 GA-BPNN. Since the traditional BPNN is more
sensitive to the initial weights and thresholds, and easily falls
into local optimal solutions. In this paper, genetic algorithm
(GA) is adopted to optimize the BPNN. GA is an optimization
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algorithm inspired by natural selection (Ref 30), which selects
the optimal individual based on the concept of survival of the
fittest. After selection, crossover and mutation operations, the
fitness of each individual was calculated, those with higher
fitness will be retained and those with lower fitness will be
removed. Repeat above operation until the maximum number
of iterations was reached. Equation 3, 4 and 5 are selection,
crossover and mutation operations, respectively. The surviving
individuals will be used as the new initial weights and
thresholds for BPNN.

pi ¼
k=Fi

Pn

j¼1
fi

ðEq 3Þ

In Eq 3, Fi means the fitness value of individual i, k ¼ 10
denotes the coefficient, and pi is the probability that individual i
is selected.

akj ¼ akj 1� bð Þ þ aljb

alj ¼ alj 1� bð Þ þ akjb

(

ðEq 4Þ

where ak represents the k th chromosome, akj indicates the
crossover operation of the k th chromosome and the l th
chromosome at the j th position.

alj ¼
aij aij � amax

� �
� r0 1� g=Gmaxð Þ; r > 0:5

aij amin � aij
� �

� r0 1� g=Gmaxð Þ; r � 0:5

(

ðEq 5Þ

Where amax and amin denote the upper and lower bounds of
gene aij, r0 is a random number, g means the current iteration
number, G indicates the maximum iteration number, and r
represents a random number between 0 and 1.

2.2.3 DBO-BPNN. Although the GA-BPNN avoids get-
ting into local optimal solutions, the global search capability of
GA-BPNN is insufficient to search for the global set of optimal
solutions. Therefore, this paper also employs DBO with better
global search capability to optimize BPNN. Xue et al (Ref 28)
inspired by the ball-rolling, dancing, foraging, stealing, and
reproduction behaviors of dung beetles, a dung beetle opti-
mization algorithm was developed. The DBO algorithm divides
the initial population into four sub-populations to search for the
optimal position respectively. The global optimal position was
obtained by comparing each subpopulation. The solutions for
the optimal position of the dung beetle were the weights and
thresholds of BPNN. DBO was adopted to optimize the weights
and thresholds of BPNN to improve its convergence speed and
reduce train time, while also getting the best global solution in
global search. The distribution of each subpopulation is shown
in Table 1. The initial population was thirty.

Circle Chaos Mapping was added to the initialized popu-
lations to make each population globally uniform distributed.

xi t þ 1ð Þ ¼ xi tð Þ þ a0 �mod
b0
2p

sin 2 pxi tð Þð Þ; 1
� �

ðEq 6Þ

The position of the ball-rolling dung beetle is updated in the
follows:

No-obstacles:

xi t þ 1ð Þ ¼ xi tð Þ þ a� k � xi t � 1ð Þ þ b� xi tð Þ � Xwj j
ðEq 7Þ

Obstacles:

xi t þ 1ð Þ ¼ xi tð Þ þ tanb xi tð Þ � Xwj j ðEq 8Þ

where t indicates the current number of iterations and xiðtÞ
denotes the position of the i th dung beetle at t th iterations.
a0 ¼ 5; b0 ¼ 0:2. k 2 0; 0:2ð � represents the constant of the bias
coefficient and b 2 0; 1ð Þ is a constant. a ¼ �1 or 1 is a natural
coefficient and Xw refers to the global worst position.
b 2 0; pð �, when b ¼ 0; p=2; p, the position of the dung beetle
remained unchanged. Please refer to Ref. 28 for other
subpopulation position update methods.

The process of DBO to search for the best solution is shown
in Fig. 1.

In order to avoid fall into a partial optimum solution, the
formula for the difference of square was incorporated with
Equation 7 and 8:

xi t þ 1ð Þ ¼ xi tð Þ þ a� k � xi t � 1ð Þ þ b� xi tð Þð Þ2� Xwð Þ2
�
�

�
�

ðEq 9Þ

xi t þ 1ð Þ ¼ xi tð Þ þ tanb xi tð Þð Þ2� Xwð Þ2
�
�

�
� ðEq 10Þ

2.3 IPSO Algorithm and Optimization Process

The particle swarm algorithm multi-objective optimization
process is shown in Fig. 2. The position of each particle
represents a turning process parameter. The particle searchable
range was set and an initial particle group position was
randomly generated based on the relationship between surface
residual stress in CD and turning parameters. Then, the fitness
of each particle was calculated. The Pareto inter-dominance
relationship between particles indicates whether each particle
was a non-dominated solution and selected the global optimal
particle. If a particle�s position and velocity were beyond the
search range, the boundary position was in placed by this
particle, and its velocity was reversed. Superior solutions were
searched in updated particles and saved to the Pareto frontier
solution set. The distance between particles was calculated in
the solution set; the excess particles were randomly removed
when either maximum number of particles or maximum
distance limit was reached. Repeated this process until reaching
maximum number of iterations, then gained best set of Pareto
solutions for turning 304 stainless steel process parameters.

The update of velocity and position of the t th iteration of
the i th particle is shown in Eq 11 and 12 respectively:

Table 1 The quantity of each subpopulation of dung beetle

Subpopulation Ball-rolling dung beetle Breeding dung beetle Foraging dung beetle Thief dung beetle

Quantity 6 6 7 11
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Fig. 1 DBO Optimization Process
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Fig. 2 IPSO optimizes flowchart
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vi t þ 1ð Þ ¼ xvi tð Þ þ c1r1 tð Þ Gi tð Þ � gi tð Þ½ �
þ c2r2 tð Þ Gg tð Þ � gi tð Þ

� �
ðEq 11Þ

gi t þ 1ð Þ ¼ gi tð Þ þ vi t þ 1ð Þ ðEq 12Þ

In Eq 11, x means the inertial weight coefficient, x ¼ 0:4;
viðtÞ and giðtÞ denote the velocities and positions of the i th
particle at the t th iteration, respectively; c1 and c2 represent

Fig. 3 Overall optimization solution process

Table 2 Chemical element composition of 304 stainless
steel (mass fraction/%)

C Si P Mo Mn Cr Ni Fe

0.0389 0.446 0.0225 0.172 0.675 18.3 8.53 Balance
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particle acceleration constants, and the value is c1 ¼ c2 ¼ 2;
r1ðtÞ and r2ðtÞ indicate two independent random numbers of the
t th iteration; GiðtÞ refers to the historical optimal position of
the i th particle at the t th iteration; GgðtÞ is the optimal position
of all particles at the t th iteration.

In the iterative process, the particle swarm was divided into
three parts. Part 1 iterated according to the particle swarm
optimization algorithm. Part 2 set random initial population
probability l1 ¼ 0:5 and regenerated particles randomly in
each iteration with a probability of l1 to make them globally
distributed and avoid falling into local optimal solutions. With
an increase in iterations, the range of optimal solution sets of
Pareto frontier had been found to a large extent. The
convergence should be within the range of optimal solutions
to get the best Pareto frontier. In Part 3, particles in population
were randomly regenerated with probability l2 during each
iteration where l2 decreased with an increase in iterations as
shown in Eq 13.

l2 ¼ e�
ffiffiffiffiffiffi

t
Tmax

p
ðEq 13Þ

In Eq 13, t represents the current number of iterations, Tmax

indicates the maximum number of iterations.
BPNN was established to map the relationship between the

turning process parameters and surface residual stress in CD
with the turning parameters as input and surface residual stress
in CD as output. Then DBO and GA were employed to
optimize BPNN, respectively. Optimized BPNN for predicting
surface residual stress in CD of 304 stainless steel. Taking
R1ðHÞ and R2ðHÞ as fitness functions of IPSO, turning
parameters were optimized to get minimum surface residual
stress in CD and maximum material removal rate. In this paper,
optimal solution set of best turning parameters was obtained

Fig. 4 Turning experiment and simulation model (L and H are the
length and height of the simulation model. v, h, e, f, r, w and l mean
the turning speed, turning depth, tool front angle, tool back angle,
tool radius, turning width and turning length, respectively) (a) 3D
experimental turning model, (b) 2D simulation model

Fig. 5 Finite element chip formation process (turning speed v = 200 m/min, turning depth h = 0.05 mm, tool front angle e = 11�, tool back
angle f = 0� and tool radius r = 0.02 mm)
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applying Pareto mutual dominance relationship. The overall
optimization solution process is shown in Fig. 3.

In this paper, the optimization scheme is settled as follows:

• Step 1: A uniform design method was adopted to acquire
the turning parameters within the parameters of turning. A

turning simulation model was built and the reliability of
the turning simulation was verified by using turning
experiments. Turning surface residual stress in CD under
different turning parameters were obtained by FEM simu-
lation. It was divided into a neural network training data
set and a test set.

• Step 2: The neural network model was built with the turn-
ing parameters as input and the surface residual stress in
CD as output. The test set was substituted into the trained
neural network model. The neural network parameters
were adjusted to bring the prediction error to the specified
accuracy.

• Step 3: By encoding the turning parameters, the initialized
particle population was randomly generated. Each individ-
ual�s velocities and positions were calculated using Equa-
tion 11 and 12.

• Step 4: The set of non-dominated solutions was obtained
adopting the Pareto dominance relation. If there was a
dominant solution, or the number of particles was maxi-
mized. Updated the set of non-dominated solutions.

• Step 5: Select the particles in the non-dominant solution
set as the leader randomly. According to the improved

Table 3 304 stainless steel material physical performance parameter

Density, kg/
m3

Young modulus ,
GPa

Poisson
ratio

Heat conductivity, W/(m �
K)

thermal diffusion coefficient,
1/K

specific heat, J/(kg �
K)

7930 193 0.28 16.2 16 � 10-6 500

Table 4 304 stainless steel J-C model parameters

Parameter A, MPa B, MPa C n m Troom, �C Tmelt , �C

Value 452 694 0.0067 0.331 0.996 20 1400

Table 5 Parameter variation range for turning simulation

Turning parameters Turning speed v, m/min Turning depth h, mm Tool front angle e, � Tool back angle f.� Tool radius r, mm

Variation range 50 � 300 0.05 � 0.30 -11 � 11 0 � 11 0.02 � 0.04

Fig. 6 Simulation residual stress in turning speed direction
distribution (turning depth h = 0.15 mm, tool front angle e = 11�,
tool back angle f = 0� and tool radius r = 0.04 mm) (a) Turning
speed 100 m/min, (b) Turning speed 200 m/min

Fig. 7 Experimental processing of 304 stainless steel turning
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algorithm, the position and velocity of the particle swarm
were updated.

• Step 6: The Pareto frontier solution set will be output as

the iteration count reaches the maximum.

When multiple targets were optimized at the same time,
different weight coefficients can be set for optimization targets
through Eq 14. Convert multi-objective optimization to single-
objective optimization.

G ¼
Xk

j¼1

ajfj

Xk

j¼1

aj ¼ 1

8
>>>>><

>>>>>:

ðEq 14Þ

In Eq 14, k ¼ 2; 0 � a1 � 1; 0 � a2 � 1. a1 ¼ 1, output
the optimal solution of minimum residual stress; a2 ¼ 1, output
the optimal solution of maximum material removal rate;
a1 ¼ a2 ¼ 0:5, output the optimal solution of minimum surface
residual stress in CD and maximum material removal rate at the
same time.

3. Materials and Method

3.1 Material

The sample was made of 304 stainless steel tube. The inner
ring diameter and outer ring diameter was 39.0 mm and
60.5 mm respectively. The workpiece was subjected to solution
heat treatment and stress relief heat treatment before turning.
The chemical composition of the material is listed in Table 2.

3.2 Turning Simulation

The finite element method (FEM) model for 304 stainless
steel was established by AdvantEdgeTM. Fig. 4(a) and (b) are
the 3D experimental turning model and 2D simulation model of
the FEM of turning, respectively. The X, Y and Z directions
correspond to speed direction, turning depth and feed direction.
The initial temperature was set to 20 �C, and the friction
coefficient was 0.3.

Figure 5 represents the FEM of chipping. During the turning
process, the highest temperature was 397 �C at the turning tool.
The surface residual stress in CD after machining was
177 MPa. Table 3 shows the physical property parameters of
304 stainless steel materials (Ref 31). Johnson-Cook(J-C)
model was used to describe the constitutive relationship of
metal during turning simulation. The expression of the J-C
criterion is shown in Eq 15.

r e; _e; Tð Þ ¼ Aþ Benð Þ 1þ C ln
_e
e0

� �

1� T � Troom
Tmelt � Troom

� �m� �

ðEq 15Þ

Where r denotes the flow stress; e means equivalent plastic
strain; _e indicates the equivalent shaping strain rate; e0
represents the reference strain rate; A means the initial yield
stress; B is the strain strengthening parameter; C indicates the
strengthening parameter dependent on the strain rate; n and m
are the work hardening index and thermal softening coefficient,
respectively; Troom and Tmelt refer to the room temperature and
the melting temperature of the material, respectively. J-C model
parameters of 304 stainless steel (Ref 31) workpieces are
shown in Table 4.

Fig. 8 Measurement of surface residual stress in CD (a)
Measurement of surface residual stress in CD in turning simulation,
(b) Measurement of surface residual stress in CD in turning
experiment

Fig. 9 Simulated and measured value of 304 stainless steel surface
residual stress in CD
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In the simulation experiment of turning 304 stainless steels,
the range of turning parameters changes as shown in Table 5.

In the turning simulation, Figs. 6(a) and (b) show the
residual stress distribution in the turning speed direction at
turning speeds of 100 m/min and 200 m/min, respectively. The
residual stress in the speed direction shows a trend of
decreasing first and then increasing with the increase of depth.
The minimum residual stress is about 0.10 � 0.15 mm below
the surface and reaches � 200 MPa. The machined surface is
mainly tensile residual stress.

3.3 Experiment Validation

Turning experiments were conducted to verify the reliability
of the turning simulation. The lathe used for experimental
processing was HTC2050 NC, and the turning tool was

TNMG160408-MM. The turning experiment process is shown
in Fig 7. The 304 stainless steel blank was machined by cutting.
The groove depth and width were 5 and 2 mm respectively. A
3 mm wide annular specimen was obtained and then the
annular surface was turned.

Proto iXRD was used to measure the residual stress on the
surface of the specimen. The target material is manganese
target. The working voltage and current were 20 KVand 4 mA,
respectively. Analyzing the diffraction peak corresponding to
the austenite {3,1,1} crystal plane, its 2h angle was about 152�.
After turning experiment, residual stress measurements in the
direction of turning speed on the surface of each specimen were
conducted three times, providing the surface residual stress in
CD values of the workpiece after the experiment. After turning
simulation, three residual stress values (Residual stress A,
Residual stress B and Residual stress C) of turning speed
direction (X direction) were taken at the positions of 10, 50,

Table 6 Different turning parameters

Serial number Turning speed v, m/min Turning depth h, mm Tool front angle e, � Tool back angle f, � Tool radius r, mm

1 150 0.10 11 0 0.04
2 100 0.15 11 0 0.04
3 200 0.15 11 0 0.04
4 150 0.15 11 0 0.04
5 150 0.20 11 0 0.04

Table 7 The data sets of the residual stress in CD for Turning 304 stainless steel

serial
number

Turning speed v, m/
min

Turning depth h,
mm

Tool front angle
e, �

Tool back angle
f, �

Tool radius r,
mm

Residual stress R1(H),
MPa

1 150 0.2 11 0 0.04 384
2 200 0.15 7 0 0.04 430.4
3 200 0.05 11 0 0.04 528.23
4 200 0.1 11 0 0.04 367.34
5 200 0.15 11 0 0.04 322.4
… … … … … … …
134 200 0.15 11 9 0.03 265.75

Fig. 10 Predicted values of the surface residual stress in CD in
three different prediction models

Fig. 11 Error of the three different prediction models
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and 90% within the machined region. The average value of
these three residual stresses was considered as the surface
residual stress in CD of the turning simulation. In turning
simulation, XX direction corresponds to the CD of the
workpiece in turning experiment. The measurement process is
illustrated in Figure 8.

4. Results and Discussion

4.1 Residual Stress

The simulated and measured values of machined direction
surface residual stress in CD of workpiece corresponding to
different turning parameters are shown in Fig. 9, with a
maximum error of 32 MPa. The experiment numbers in
Figure 9 correspond to the serial number in Table 6. Under
different turning parameters, the mean absolute percentage
error of residual stress between simulated and measured is
5.10%. These results demonstrate that the surface residual
stress in CD measured by simulation and experiment have good
agreement, and the established turning model accurately
predicts surface residual stress in CD. Different turning
parameters are shown in Table 6.

The surface residual stress in CD data under different
turning parameters were obtained by the FEM simulation.
Table 7 shows the data sets (the complete dataset is available in
the supplementary file) required by the neural network
prediction model. The first five columns are input and the last
column is output. The range of variation for turning speed was

50 to 300 m/min, the range of variation for turning depth was
0.05 to 0.30 mm, the range of front angle for the tool was
� 11� to 11�, the range of back angle for the tool was 0� to 11�,
and the range for the tool radius was 0.02 to 0.04 mm.

The average absolute error of the forecast was set within
5%. The structure and parameters of the neural network were
adjusted, with the number of hidden layers being 3 and the
number of hidden layer nodes being 15, 20, and 15. The
transfer function from the input layer into the hidden layer was
the ‘‘hyperbolic tangent function’’, while the other transfer
functions were ‘‘linear functions’’. The maximum number of
iterations was 1000. The additional energy factor was 0.95, the
minimum energy gradient was 0.01, and the learning rate was
0.0008.

The data set consisted of 134 data sets that were scrambled,
with the first 114 rows of the data set serving as the training set
and the last 20 rows serving as the test set. The BPNN and GA-
BPNN models used the same setup. Figure 10 shows the
predicted values of three different prediction models. Figure 11
shows the error of three prediction models. Table 8 represents
the turning parameters of 20 rows test sets.

The turning parameters for each group in Fig. 10 and 11 are
provided in Table 8. The maximum prediction errors of surface
residual stress in CD for BPNN, GA-BPNN and DBO-BPNN
were 95 MPa, 122 MPa, and 28 MPa, respectively. The mean
absolute percentage errors of BPNN, GA-BPNN and DBO-
BPNN predictions were 15.17, 10.68 and 4.77%, respectively.
The prediction error of DBO-BPNN was minimum. In this
paper, DBO-BPNN was found to be the best choice for
predicting surface residual stress in CD. It can map the

Table 8 Turning parameters of 20 rows test sets

Serial number Turning speed v, m/min Turning depth h, mm Tool front angle e, � Tool back angle f, � Tool radius r, mm

1 200 0.15 11 5 0.04
2 50 0.15 11 0 0.04
3 100 0.15 11 0 0.04
4 200 0.2 11 0 0.04
5 250 0.15 11 0 0.04
6 300 0.15 11 0 0.04
7 50 0.15 11 0 0.03
8 100 0.15 11 0 0.03
9 150 0.15 11 0 0.03
10 300 0.15 11 0 0.03
11 50 0.15 11 0 0.02
12 100 0.15 11 0 0.02
13 150 0.15 11 0 0.02
14 250 0.15 11 0 0.02
15 300 0.15 11 0 0.02
16 200 0.15 11 0 0.03
17 150 0.15 11 0 0.03
18 200 0.15 -3 0 0.04
19 200 0.15 -3 0 0.02
20 200 0.15 11 9 0.03

Table 9 Parameter variation range for optimization

Turning parameters Turning speed v, m/min Turning depth h, mm) Tool front angle e, � Tool back angle f, � Tool radius r, mm

Variation range 30 � 400 0.02 � 0.40 -15 � 15 0 � 15 0.02 � 0.06
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relationship between surface residual stress in CD and turning
parameters well.

4.2 Turning Parameters and Material Removal Rate

When optimizing the process parameters of 304 stainless
steel, the range of tuning parameters should be constrained. The
changing range of turning parameters is shown in Table 9. The
DBO-BPNN has been employed as the fitness function of IPSO
as a result of this model can accurately represent the
relationship between the turning parameters and the surface
residual stress in CD. Through the debugging algorithm, the
particle population size was determined to be 240, the

maximum number of iterations was 500, and the number of
Pareto frontier non-dominated solution sets was 150. The 304
stainless steel process parameters turning were optimized by
combining the DBO-BPNN and IPSO.

The material removal rate and surface residual stress in CD
solution set before optimization are shown in Fig. 12(a). Q was
the optimal result of surface residual stress in CD and material
removal rate that can be obtained from turning simulation.

Figure 12 (b) shows the optimization results. There are 150
solutions in the Pareto frontier solution set, representing Pareto
optimal solutions of surface residual stress in CD and material
removal rate under different weights. Q1, Q2 and Q3 were the
material removal rate and surface residual stress in CD after
optimization. When the a1=1, the optimization result for Q1

(83,0.02). It was transformed into optimization with minimum
surface residual stress in CD as a single objective. When the
a2=1, the optimization result for Q3 (131,0.16). It was
transformed into optimization with a maximum material
removal rate as a single objective. When a1= a2=0.5, the
optimization result for Q2 (114,0.07). The optimization objec-
tive was both minimum surface residual stress in CD and
maximum material removal rate.

The surface residual stresses in CD of Q1, Q2 and Q3 were
83 MPa, 114 MPa and 131 MPa, respectively. The minimum
surface residual stress in CD of the simulation was 146 MPa.
They were 75.90, 28.07, and 11.45% lower than before
optimization. The material removal rate of Q2 and Q3 were
0.07 m2/min and 0.16 m2/min, respectively. The simulated best
material removal rate was 0.06m2/min. Q2 and Q3 increased by
16.67 and 166.67% respectively compared to before optimiza-
tion. The surface residual stress in CD was effectively reduced,
and the material removal rate was improved.

The optimal turning process parameters of 304 stainless
steel under different weight coefficients were obtained by
decoding, as shown in Table 10.

In this paper, there was good consistency between the
residual stresses on the surface of the 304 stainless steels
obtained from the turning experiments and the FEM simula-
tions. The established DBO-BPNN surface residual stress in
CD prediction model had a prediction error of 4.77% and was
able to accurately establish the nonlinear mapping relationship
between turning parameters and surface residual stress in CD.
Therefore, based on this mapping relationship, IPSO can
quickly identify the Pareto solution set of turning parameters
that result in the minimum surface residual stress in CD. Output
turning parameters based on surface residual stress in CD and
material removal rate weighting coefficients. Due to the
differing weights assigned to surface residual stress in CD
and material removal rate, the Pareto frontier solution set
exhibits varying trends. At the forefront of the Pareto solution
set, the weight assigned to surface residual stress in CD was
greater than the weight assigned to material removal rate.Fig. 12 Pareto optimal solution set, (a) Before optimization, (b)

After optimization

Table 10 Optimal turning parameters under different weights

Weights Turning speed v, m/min Turning depth h, mm Tool front angle e, � Tool back angle f, � Tool radius r, mm

Q1(a1 ¼ 1) 60 0.40 15 8 0.02
Q2(a1 ¼ 0:5) 180 0.40 15 10 0.02
Q3(a2 ¼ 1) 400 0.40 15 5 0.02
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Consequently, both surface residual stress in CD and material
removal rate were minimized to a significant extent. In the back
end of the Pareto solution set, the reverse was true. In the
middle of the Pareto solution set, the weights assigned to
surface residual stress in CD and material removal rate were
similar. It was within this region that the turning parameters can
simultaneously achieve maximum material removal rate and
minimum surface residual stress in CD.

5. Conclusion

In this paper, the IPSO algorithm was applied to optimize
the surface residual stress in CD and material removal rate to
get the Pareto solution set of the optimal turning parameters.
DBO-BPNN was adopted to map the nonlinear relationship
between turning parameters and surface residual stress in CD.
Then, turning simulation was used to obtain the surface residual
stress in CD under different turning parameters. Turning
experiments were adopted to verify the accuracy of the turning
simulation. The results of the study are as follows:

(1) The maximum error between the turning experiment and
the turning simulation experiment in the turning speed
direction for residual stress is 32 MPa, with an average
absolute percentage error of 5.10%. This indicates that
the turning simulation model can be used to obtain the
residual stress in the turning speed direction under dif-
ferent parameters.

(2) The mean absolute percentage error of the predictions of
the three surface residual stress in CD prediction models
(BPNN, GA-BPNN and DBO-BPNN) were 15.17,
10.68 and 4.77%, respectively. The results indicate that
DBO-BPNN has a higher prediction accuracy and can
more reliably forecast the surface residual stresses in
CD of 304 stainless steel.

(3) Surface residual stress in CD and material removal rate
were optimized with the combination IPSO and DBP-
BPNN. The optimized surface residual stress in CD was
decreased by an average of 38.48% and the material re-
moval rate was increased by an average of 91.69%. The
optimized turning parameters gained provided a feasible
solution to improve the service life and reduce the pro-
duction cost of 304 stainless steel parts.
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