Skip to main content
Log in

Amorphous Nickel Boride Deposited on Silicon Nanowires and Carbon Nanowall Templates for High-Performance Micro-supercapacitors

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Transition metal materials (TMs) show promise as active materials for energy storage applications due to their excellent conductivity and electrochemical activity. In this study, amorphous nickel boride (a-NiB) was deposited onto high surface area templates comprising carbon nanowalls (CNW) and silicon nanowires (SiNWs) using a simple, cost-effective electroless process, for use as electrodes in electrochemical capacitors (ECs). The electrochemical performance of the electrodes was found to be influenced by the type of template used for the a-NiB deposition. Areal capacitances of 204.4 mF·cm−2 and 165.7 mF·cm−2 at a scan rate of 5 mV·s−1 were measured for CNWs-NiB and SiNW-NiB electrodes, respectively. In addition, both types of electrode materials displayed excellent charging/discharging stability after 10,000 cycles. A solid-state symmetric EC assembled with a CNW-NiB electrode exhibited a high areal capacitance of 42 mF·cm−2 at a high current density of 12 mA·cm−2. The CNW-NiB-based ECs can also deliver a high energy density of 19.1 mWh·cm−2 at 0.64 W·cm−2 with charging/discharging stability over 10,000 consecutive cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, and H. Wang, Boosting the Cycling Stability of Transition Metal Compounds-Based Supercapacitors, Energy Storage Mater., 2019, 16, p 545–573. https://doi.org/10.1016/j.ensm.2018.05.019

    Article  Google Scholar 

  2. S. Hassan, M. Suzuki, and A.A. El-Moneim, Capacitive Behavior of Manganese Dioxide/Stainless Steel Electrodes at Different Deposition Currents, Am. J. Mater. Sci., 2012, 2(2), p 11–14. https://doi.org/10.5923/j.materials.20120202.02

    Article  Google Scholar 

  3. S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, and M.F. Mousavi, Designing 3D Highly Ordered Nanoporous CuO Electrodes for High-Performance Asymmetric Supercapacitors, ACS Appl. Mater. Interfaces, 2015, 7(8), p 4851–4860. https://doi.org/10.1021/am5088299

    Article  CAS  PubMed  Google Scholar 

  4. H. Heydari, S.E. Moosavifard, S. Elyasi, and M. Shahraki, Nanoporous CuS Nano-Hollow Spheres as Advanced Material for High-Performance Supercapacitors, Appl. Surf. Sci., 2017, 394, p 425–430. https://doi.org/10.1016/j.apsusc.2016.10.045

    Article  ADS  CAS  Google Scholar 

  5. K.R. Prasad and N. Miura, Electrochemical Synthesis and Characterization of Nanostructured Tin Oxide for Electrochemical Redox Supercapacitors, Electrochem. Commun., 2004, 6(8), p 849–852. https://doi.org/10.1016/j.elecom.2004.06.008

    Article  CAS  Google Scholar 

  6. O. Ghodbane, J.L. Pascal, and F. Favier, Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors, ACS Appl. Mater. Interfaces, 2009, 1(5), p 1130–1139. https://doi.org/10.1021/am9000867

    Article  CAS  PubMed  Google Scholar 

  7. J. Yan, E. Khoo, A. Sumboja, and P.S. Lee, Facile Coating of Manganese Oxide on tin Oxide Nanowires with High-Performance Capacitive Behavior, ACS Nano, 2010, 4(7), p 4247–4255. https://doi.org/10.1021/nn1011205

    Article  CAS  PubMed  Google Scholar 

  8. M.S. Wu, Z.S. Guo, and J.J. Jow, Highly Regulated Electrodeposition of Needle-like Manganese Oxide Nanofibers on Carbon Fiber Fabric for Electrochemical Capacitors, J. Phys. Chem. C, 2010, 114(49), p 21861–21867. https://doi.org/10.1021/jp1087273

    Article  CAS  Google Scholar 

  9. A. Guerra, A. Achour, S. Vizireanu, G. Dinescu, S. Messaci, T. Hadjersi, R. Boukherroub, Y. Coffinier, and J.J. Pireaux, ZnO/Carbon Nanowalls Shell/Core Nanostructures as Electrodes for Supercapacitors, Appl. Surface Sci., 2019, 481, p 926–932. https://doi.org/10.1016/j.apsusc.2019.02.080

    Article  ADS  CAS  Google Scholar 

  10. S.I. Kim, J.S. Lee, H.J. Ahn, H.K. Song, and J.H. Jang, Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology, ACS Appl. Mater. Interfaces, 2013, 5(5), p 1596–1603. https://doi.org/10.1021/am400007t

    Article  CAS  PubMed  Google Scholar 

  11. W.Y. Lee, T.K. Chuang, and C.K. Hsieh, Enhanced capacitance of hydrous ruthenium oxide based all-solid-state interdigital in-planar micro-supercapacitors, Electrochim. Acta, 2019, 317, p 312–321. https://doi.org/10.1016/j.electacta.2019.05.114

    Article  CAS  Google Scholar 

  12. H. Xia, Y.S. Meng, G. Yuan, C. Cui, and L. Lu, A symmetric RuO2/RuO2 supercapacitor operating at 16 V by using a neutral aqueous electrolyte, Electrochem. Solid-State Lett., 2012, 15(4), p 60–63. https://doi.org/10.1149/2.001204esl

    Article  CAS  Google Scholar 

  13. W. Deng, X. Ji, Q. Chen, and C.E. Banks, Electrochemical Capacitors Utilising Transition Metal Oxides: An Update of Recent Developments, RSC Adv., 2011, 1(7), p 1171–1178. https://doi.org/10.1039/c1ra00312a

    Article  ADS  CAS  Google Scholar 

  14. X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, and Y. Li, Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes with a Thin Carbon Shell, Adv. Energy Mater., 2014, 4(4), p 1300994. https://doi.org/10.1002/aenm.201300994

    Article  CAS  Google Scholar 

  15. D. Choi, G.E. Blomgren, and P.N. Kumta, Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors, Adv. Mater., 2006, 18(9), p 1178–1182. https://doi.org/10.1002/adma.200501717

    Article  CAS  Google Scholar 

  16. K. Robert, C. Douard, A. Demortière, F. Blanchard, P. Roussel, T. Brousse, and C. Lethien, On Chip Interdigitated Micro-Supercapacitors Based on Sputtered Bifunctional Vanadium Nitride Thin Films with Finely Tuned Inter-and Intracolumnar Porosities, Adv. Mater. Technol., 2018, 3(7), p 1800036. https://doi.org/10.1002/admt.201800036

    Article  CAS  Google Scholar 

  17. E. Haye, A. Achour, A. Guerra, F. Moulaï, T. Hadjersi, R. Boukherroub, A. Panepinto, T. Brousse, J.J. Pireaux, and S. Lucas, Achieving on Chip Micro-Supercapacitors Based on CrN Deposited by Bipolar Magnetron Sputtering at Glancing Angle, Electrochim. Acta, 2019, 324, p 134890. https://doi.org/10.1016/j.electacta.2019.134890

    Article  CAS  Google Scholar 

  18. A. Guerra, E. Haye, A. Achour, M. Harnois, T. Hadjersi, J.F. Colomer, and R. Boukherroub, High Performance of 3D Silicon Nanowires Array@CrN for Electrochemical Capacitors, Nanotechnology, 2019, 31(3), p 035407. https://doi.org/10.1088/1361-6528/ab551f

    Article  ADS  PubMed  Google Scholar 

  19. B. Wei, H. Liang, D. Zhang, Z. Wu, Z. Qi, and Z. Wang, CrN Thin Films Prepared by Reactive DC Magnetron Sputtering for Symmetric Supercapacitors, J. Mater. Chem. A, 2017, 5(6), p 2844–2851. https://doi.org/10.1039/c6ta109

    Article  CAS  Google Scholar 

  20. S.S. Karade, D.P. Dubal, and B.R. Sankapal, MoS2 Ultrathin Nanoflakes for High-Performance Supercapacitors: Room Temperature Chemical Bath Deposition (CBD), RSC Adv., 2016, 6(45), p 39159–39165. https://doi.org/10.1039/C6RA04657G

    Article  ADS  CAS  Google Scholar 

  21. L. Zhang, H.B. Wu, and X.W.D. Lou, Unusual CoS2 Ellipsoids with Anisotropic Tube-Like Cavities and Their Application in Supercapacitors, Chem. Commun., 2012, 48(55), p 6912–6914. https://doi.org/10.1039/C2CC32662F

    Article  CAS  Google Scholar 

  22. K.J. Huang, J.Z. Zhang, and Y. Fan, One-Step Solvothermal Synthesis of Different Morphologies CuS Nanosheets Compared as Supercapacitor Electrode Materials, J. Alloy. Compd., 2015, 625, p 158–163. https://doi.org/10.1016/j.jallcom.2014.11.068

    Article  CAS  Google Scholar 

  23. N.S. Arul, L.S. Cavalcante, and J.I. Han, Facile Synthesis of ZnS/MnS Nanocomposites for Supercapacitor Applications, J. Solid State Electrochem., 2018, 22(1), p 303–313. https://doi.org/10.1007/s10008-017-3780-6

    Article  CAS  Google Scholar 

  24. A. Achour, J.B. Ducros, R.L. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, M.A. Djouadi, and T. Brousse, Hierarchical Nanocomposite Electrodes Based on Titanium Nitride and Carbon Nanotubes for Micro-Supercapacitors, Nano Energy, 2014, 7, p 104–113. https://doi.org/10.1016/j.nanoen.2014.04.018

    Article  CAS  Google Scholar 

  25. T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor, K. Armstrong, D. Guay, and D. Pech, Hydrous RuO2/Carbon Nanowalls Hierarchical Structures for All-Solid-State Ultrahigh-Energy-Density Micro-Supercapacitors, Nano Energy, 2014, 10, p 288–294. https://doi.org/10.1016/j.nanoen.2014.09.017

    Article  CAS  Google Scholar 

  26. D.P. Dubal, D. Aradilla, G. Bidan, P. Gentile, T.J. Schubert, J. Wimberg, S. Sadki, and P. Gomez-Romero, 3D Hierarchical Assembly of Ultrathin MnO2 Nanoflakes on Silicon Nanowires for High-Performance Micro-Supercapacitors in Li-Doped Ionic Liquid, Sci. Rep., 2015, 5, p 9771. https://doi.org/10.1038/srep09771

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. X. Cao, X. Wang, L. Cui, D. Jiang, Y. Zheng, and J. Liu, Strongly Coupled Nickel Boride/Graphene Hybrid as a Novel Electrode Material for Supercapacitors, Chem. Eng. J., 2017, 327, p 1085–1092. https://doi.org/10.1016/j.cej.2017.06.019

    Article  CAS  Google Scholar 

  28. J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, S. Zhunyu, Z. Sun, C. Somsen, M. Muhler, and W. Schuhmann, Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution, Adv. Energy Mater., 2016, 6(6), p 1502313. https://doi.org/10.1002/aenm.201502313

    Article  CAS  Google Scholar 

  29. R. Chen, L. Liu, J. Zhou, L. Hou, and F. Gao, High-Performance Nickel-Cobalt-Boron Material for an Asymmetric Supercapacitor with an Ultrahigh Energy Density, J. Power. Sources, 2017, 341, p 75–82. https://doi.org/10.1016/j.jpowsour.2016.11.044

    Article  ADS  CAS  Google Scholar 

  30. O.R. Oloyede, Z. Liu, M. Islam, H. Liu, and R.X. Guo, Deposition and Characterization of Electroless Ni-P/Ni-W-P Duplex Coating Using Electrochemical Impedance Spectroscopy, Adv. Mater. Res., 2014, 856, p 103–107. https://doi.org/10.4028/www.scientific.net/AMR.856.103

    Article  CAS  Google Scholar 

  31. Y. Chen, T. Zhou, L. Li, W.K. Pang, X. He, Y.N. Liu, and Z. Guo, Interfacial Engineering of Nickel Boride/Metaborate and its Effect on High Energy Density Asymmetric Supercapacitors, ACS Nano, 2019, 13(8), p 9376–9385. https://doi.org/10.1021/acsnano.9b04200

    Article  CAS  PubMed  Google Scholar 

  32. Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of MB (M= Ni, Co) Catalysts on Silicon Nanowire Arrays, ACS Appl. Mater. Interfaces, 2016, 8(44), p 30143–30151. https://doi.org/10.1021/acsami.6b11338

    Article  CAS  PubMed  Google Scholar 

  33. H. Li, H. Li, W.L. Dai, W. Wang, Z. Fang, and J.F. Deng, XPS Studies on Surface Electronic Characteristics of Ni–B and Ni–P Amorphous Alloy and its Correlation to their Catalytic Properties, Appl. Surf. Sci., 1999, 152(1–2), p 25–34. https://doi.org/10.1016/S0169-4332(99)00139-4

    Article  ADS  CAS  Google Scholar 

  34. Y. Song, T.Y. Liu, B. Yao, T.Y. Kou, D.Y. Feng, X.X. Liu, and Y. Li, Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cyclic Stability, Small, 2017, 13(16), p 1700067. https://doi.org/10.1002/smll.201700067

    Article  CAS  Google Scholar 

  35. P. Yang, Y. Li, Z. Lin, Y. Ding, S. Yue, C.P. Wong, and W. Mai, Worm-like Amorphous MnO2 Nanowires Grown on Textiles for High-Performance Flexible Supercapacitors, J. Mater. Chem. A, 2014, 2(3), p 595–599. https://doi.org/10.1039/C3TA14076J

    Article  CAS  Google Scholar 

  36. H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, and G.W. Yang, Amorphous Nickel Hydroxide Nanospheres with Ultrahigh Capacitance and Energy Density as Electrochemical Pseudocapacitor Materials, Nat. Commun., 1894, 2013, p 4. https://doi.org/10.1038/ncomms2885

    Article  CAS  Google Scholar 

  37. M.A. Bissett, I.A. Kinloch, and R.A. Dryfe, Characterization of MoS2–Graphene Composites for High-Performance Coin Cell Supercapacitors, ACS Appl. Mater. Interfaces, 2015, 7(31), p 17388–17398. https://doi.org/10.1021/acsami.5b03874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 52302032 and 52375395), Natural Science Foundation Grant of Hubei Province (No. 2023AFB007), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515110323), China Postdoctoral Science Foundation (No. 2022M722936), Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan (No. CUG2021234), Postdoctoral Creative Research Post of Hubei Province and the Guiding project of Scientific Research Plan of Education Department of Hubei Province (No. B2022261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Tang, H., Zhang, N. et al. Amorphous Nickel Boride Deposited on Silicon Nanowires and Carbon Nanowall Templates for High-Performance Micro-supercapacitors. J. of Materi Eng and Perform 33, 2268–2278 (2024). https://doi.org/10.1007/s11665-023-08776-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08776-7

Keywords

Navigation