Skip to main content

Advertisement

Log in

Application of 1-Decanol Loaded in Silica Aerogel and Expanded Graphite Composite Phase Change Materials in Cold Chain Transport Portable Boxes

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) offer efficient solutions for energy sustainability. Here, we used 1-decanol, expanded graphite (EG) with high thermal conductivity, and silica aerogel (SA), which is often used for thermal insulation protection, to prepare composite PCMs (EG-PCM and SA-PCM) with stable shape through the vacuum absorption method. The leakage rate test after heat treatment determined the optimum contents of EG and SA in the composite PCMs to be 9 and 14 wt.%, respectively. Even after 220 heating/cooling cycles, the fabricated composite PCMs still maintain good thermal stability. The thermal conductivity enhancement of EG-PCM and SA-PCM to 16.09 times and 1.21 times of the neat PCM, respectively. Moreover, we tested the prepared two composite PCMs by yogurt preservation experiments in a cold chain transport portable box, which proved that they could effectively maintain the temperature and acidity of yogurt for several hours without any cooling system. Based on these results, EG-PCM and SA-PCM have broad application prospects in cold chain transport of temperature-sensitive products such as food, medicine, and vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

L :

Leakage rate (%)

M 0 :

Mass before heat treatment (g)

M 1 :

Mass after heat treatment (g)

T m :

Melting temperature (°C)

T f :

Freezing temperature (°C)

ΔH m :

Melting latent heat (J g−1)

ΔH f :

Freezing latent heat (J g−1)

PCM:

Phase change material

EG:

Expanded graphite

SA:

Silica aerogel

EG-PCM:

Expanded graphite/1-decanol composite PCMs

SA-PCM:

Silica aerogel/1-decanol composite PCMs

References

  1. K. Pandey, S.F. Ali, S.K. Gupta, P. Saikia, D. Rakshit, and S. Saha, Facile Technique to Encapsulate Phase Change Material in an Amphiphilic Polymeric Matrix for Thermal Energy Storage, Appl. Energy, 2021, 292, p 116917.

    Article  CAS  Google Scholar 

  2. J.D. Williams and G.P. Peterson, A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials, Nanomaterials, 2021, 11(10), p 2578.

    Article  CAS  Google Scholar 

  3. E. Oro, A. de Gracia, A. Castell, M.M. Farid, and L.F. Cabeza, Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications, Appl. Energy, 2012, 99, p 513–533.

    Article  CAS  Google Scholar 

  4. K. Sharun and K. Dhama, COVID-19 Vaccine Diplomacy and Equitable Access to Vaccines Amid Ongoing Pandemic, Arch. Med. Res., 2021, 52(7), p 761–763.

    Article  CAS  Google Scholar 

  5. S. Devrani, R. Tiwari, N. Khan, K. Sankar, S. Patil, and K. Sridhar, Enhancing the Insulation Capability of a Vaccine Carrier Box: An Engineering Approach, J. Energy Storage, 2021, 36, p 102182.

    Article  Google Scholar 

  6. N. Lin, C. Li, D. Zhang, Y. Li, and J. Chen, Enhanced Cold Storage Performance of Na2SO4·10H2O/Expanded Graphite Composite Phase Change Materials, Sustain. Energy Technol. Assess., 2021, 48, p 101596.

    Google Scholar 

  7. Q. Lin, Q.H. Zhao, and B. Lev, Cold Chain Transportation Decision in the Vaccine Supply Chain, Eur. J. Oper. Res., 2020, 283(1), p 182–195.

    Article  Google Scholar 

  8. K.L. Ma, X.L. Zhang, J. Ji, L. Han, X.J. Ding, and W.H. Xie, Application and Research Progress of Phase Change Materials in Biomedical Field, Biomater. Sci., 2021, 9(17), p 5762–5780.

    Article  CAS  Google Scholar 

  9. L. Liu, X. Zhang, X. Xu, X. Lin, Y. Zhao, L. Zou, Y. Wu, and H. Zheng, Development of Low-Temperature Eutectic Phase Change Material with Expanded Graphite for Vaccine Cold Chain Logistics, Renew. Energy, 2021, 179, p 2348–2358.

    Article  CAS  Google Scholar 

  10. F. He, X. Li, G. Zhang, G. Zhong, and J. He, Experimental Investigation of Thermal Management System for Lithium Ion Batteries Module with Coupling Effect by Heat Sheets and Phase Change Materials, Int. J. Energy Res., 2018, 42(10), p 3279–3288.

    Article  Google Scholar 

  11. X.Q. Zhai, X.L. Wang, T. Wang, and R.Z. Wang, A Review on Phase Change Cold Storage in Air-Conditioning System: Materials and Applications, Renew. Sustain. Energy Rev., 2013, 22, p 108–120.

    Article  CAS  Google Scholar 

  12. X. Xu, X. Zhang and S. Liu, Experimental Study on Cold Storage Box with Nanocomposite Phase Change Material and Vacuum Insulation Panel, Int. J. Energy Res., 2018, 42(14), p 4429–4438.

    Article  Google Scholar 

  13. J. Giro-Paloma, M. Martinez, L.F. Cabeza, and A.I. Fernandez, Types, Methods, Techniques, and Applications for Microencapsulated Phase Change Materials (MPCM): A Review, Renew. Sustain. Energy Rev., 2016, 53, p 1059–1075.

    Article  CAS  Google Scholar 

  14. C. Ding, L. Liu, F. Ma, F. Chen, S. Zhang, and T. Sun, Enhancing the Heat Storage Performance of a Na2HPO4·12H2O System via Introducing Multiwalled Carbon Nanotubes, ACS Omega, 2021, 6(43), p 29091–29099.

    Article  CAS  Google Scholar 

  15. Y. Zhao, X. Zhang, X. Xu, and S. Zhang, Development of Composite Phase Change Cold Storage Material and its Application in Vaccine Cold Storage Equipment, J. Energy Storage, 2020, 30, p 101455.

    Article  Google Scholar 

  16. Y. Song, N. Zhang, Y. Jing, X. Cao, Y. Yuan, and F. Haghighat, Experimental and Numerical Investigation on Dodecane/Expanded Graphite Shape-Stabilized Phase Change Material for Cold Energy Storage, Energy, 2019, 189, p 116175.

    Article  CAS  Google Scholar 

  17. K. Dong, N. Sheng, D. Zou, C. Wang, K. Shimono, T. Akiyama, and T. Nomura, A High-Thermal-Conductivity, High-Durability Phase-Change Composite Using a Carbon Fibre Sheet as a Supporting Matrix, Appl. Energy, 2020, 264, p 114685.

    Article  CAS  Google Scholar 

  18. B. Chi, Y. Yao, S. Cui, and X. Jin, Preparation of Graphene Oxide Coated Tetradecanol/Expanded Graphite Composite Phase Change Material for Thermal Energy Storage, Mater. Lett., 2021, 282, p 128666.

    Article  CAS  Google Scholar 

  19. J. Chen, Z. Ling, X. Fang, and Z. Zhang, Experimental and Numerical Investigation of Form-Stable Dodecane/Hydrophobic Fumed Silica Composite Phase Change Materials for Cold Energy Storage, Energy Convers. Manag., 2015, 105, p 817–825.

    Article  CAS  Google Scholar 

  20. M.M. Umair, Y. Zhang, K. Iqbal, S.F. Zhang, and B.T. Tang, Novel Strategies and Supporting Materials Applied to Shape-Stabilize Organic Phase Change Materials for Thermal Energy Storage-A Review, Appl. Energy, 2019, 235, p 846–873.

    Article  CAS  Google Scholar 

  21. X. Leng, S. Chen, K. Yang, M. Chen, M. Shaker, E.E. Vdovin, Q. Ge, K.S. Novoselov, and D.V. Andreeva, Introduction to Two-Dimensional Materials, Molecular Interactions on Two-Dimensional Materials. World Scientific, 2021, p 1–41

    Google Scholar 

  22. S.R. Rakkappan, S. Sivan, M. Naarendharan, P.S. Sudhir, and D.S. Preetham, Experimental Investigation on Enhanced Energy Storage Characteristics of Spherically Encapsulated 1-Decanol/Expanded Graphite Composite for Cold Storage System, J. Energy Storage, 2021, 41, p 102941.

    Article  Google Scholar 

  23. J. Liu, M. Xie, Z. Ling, X. Fang, and Z. Zhang, Novel MgCl2-KCl/Expanded Graphite/Graphite Paper Composite Phase Change Blocks with High Thermal Conductivity and Large Latent Heat, Sol. Energy, 2018, 159, p 226–233.

    Article  CAS  Google Scholar 

  24. R.A. Mitran, S. Ionita, D. Lincu, D. Berger, and C. Matei, A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications, Molecules, 2021, 26(1), p 241.

    Article  CAS  Google Scholar 

  25. L. Liu, J. Chen, Y. Qu, T. Xu, H. Wu, G. Huang, X. Zhou, and L. Yang, A Foamed Cement Blocks with Paraffin/Expanded Graphite Composite Phase Change Solar Thermal Absorption Material, Sol. Energy Mater. Sol. Cells, 2019, 200, p 110038.

    Article  CAS  Google Scholar 

  26. R. Kumar, A. Nirwan, B. Mondal, R. Kumar, and A. Dixit, Study on Thermophysical Properties of Pentadecane and its Composites with Thermally Expanded Graphite as Shape-Stabilized Phase Change Materials, J. Therm. Anal. Calorim., 2022, 147, p 8689–8697.

    Article  CAS  Google Scholar 

  27. G.V. Belessiotis, K.G. Papadokostaki, E.P. Favvas, E.K. Efthimiadou, and S. Karellas, Preparation and Investigation of Distinct and Shape Stable Paraffin/SiO2 Composite PCM Nanospheres, Energy Convers. Manag., 2018, 168, p 382–394.

    Article  CAS  Google Scholar 

  28. Y. Cai, G. Sun, M. Liu, J. Zhang, Q. Wang, and Q. Wei, Fabrication and Characterization of Capric Lauric Palmitic Acid/Electrospun SiO2 Nanofibers Composite as Form-Stable Phase Change Material for Thermal Energy Storage/Retrieval, Sol. Energy, 2015, 118, p 87–95.

    Article  CAS  Google Scholar 

  29. L. Zhao, Q. Yu, M. Li, Y. Zhang, Y. Wang, D. Zhan, S. Jin, and Y. Huang, Preparation and Thermal Properties of Low-Temperature Composite Phase-Change Materials Based on a Binary Eutectic Mixture with Expanded Graphite: Effect of Particle Size and Mass Fraction, J. Energy Storage, 2021, 40, p 102778.

    Article  Google Scholar 

  30. B. Nie, J. Chen, Z. Du, Y. Li, T. Zhang, L. Cong, B. Zou, and Y. Ding, Thermal Performance Enhancement of a Phase Change Material (PCM) Based Portable Box for Cold Chain Applications, J. Energy Storage, 2021, 40, p 102707.

    Article  Google Scholar 

  31. H. Zhang, X. Gao, C. Chen, T. Xu, Y. Fang, and Z. Zhang, A Capric-Palmitic-Stearic Acid Ternary Eutectic Mixture/Expanded Graphite Composite Phase Change Material for Thermal Energy Storage, Compos. Part A Appl. Sci. Manuf., 2016, 87, p 138–145.

    Article  CAS  Google Scholar 

  32. J. Guan, Z. Li, S. Chen, and W. Gu, Zero-Valent Iron Supported on Expanded Graphite from Spent Lithium-Ion Battery Anodes and Ferric Chloride for the Degradation of 4-Chlorophenol in Water, Chemosphere, 2022, 290, p 133381.

    Article  CAS  Google Scholar 

  33. J. Tao, F. Yang, T. Wu, J. Shi, H.-B. Zhao, and W. Rao, Thermal Insulation, Flame Retardancy, Smoke Suppression, and Reinforcement of Rigid Polyurethane Foam Enabled by Incorporating a P/Cu-Hybrid Silica Aerogel, Chem. Eng. J., 2023, 461, p 142061.

    Article  CAS  Google Scholar 

  34. M. Shaker, A.A.S. Ghazvini, R. Riahifar, and A. Mumtaz, On the Relationship between the Porosity and Initial Coulombic Efficiency of Porous Carbon Materials for the Anode in Lithium–Ion Batteries, Electron. Mater. Lett., 2022, 18(4), p 400–406.

    Article  CAS  Google Scholar 

  35. S. Mohsenian, M.S. Esmaili, J. Fathi, and B. Shokri, Hydrogen and Carbon Black Nano-Spheres Production via Thermal Plasma Pyrolysis of Polymers, Int. J. Hydrog Energy, 2016, 41(38), p 16656–16663.

    Article  CAS  Google Scholar 

  36. M. Shaker, A.A.S. Ghazvini, S. Feng, W. Cao, X. Meng, Q. Ge, and R. Riahifar, Improving the Electrochemical Performance of Pouch Cell Electric Double-Layer Capacitors by Integrating Graphene Nanoplates into Activated Carbon, Energy Technol., 2022, 10(2), p 2100735.

    Article  CAS  Google Scholar 

  37. X. Meng, B. Peng, L. Yao, Y. Wang, S. Feng, Q. Ge, and M. Shaker, Ion Beam Assisted Electron Beam Vacuum Deposition of Antireflective SiO2 Coating on MgAl2O4 Spinel, Int. J. Appl. Ceram. Technol. (2023)

  38. W. Hu, M. Li, W. Chen, N. Zhang, B. Li, M. Wang, and Z. Zhao, Preparation of Hydrophobic Silica Aerogel with Kaolin Dried at Ambient Pressure, Colloids Surf. A-Physicochem. Eng. Asp., 2016, 501, p 83–91.

    Article  CAS  Google Scholar 

  39. S.R. Rakkappan, S. Sivan, D.S. Preetham, P.S. Sudhir, and M. Naarendharan, Facile Approach to Fend Off the Supercooling Phenomenon of Water in a Spherical Enclosure for Energy-Efficient and Sustainable Cold Thermal Energy Storage System, Sustain. Energy Technol. Assess., 2021, 45, p 101076.

    Google Scholar 

  40. S.R. Rakkappan, S. Sivan, S.N. Ahmed, M. Naarendharan, and P.S. Sudhir, Preparation, Characterisation and Energy Storage Performance Study on 1-Decanol-Expanded Graphite Composite PCM for Air-Conditioning Cold Storage System, Int. J. Refrig, 2021, 123, p 91–101.

    Article  CAS  Google Scholar 

  41. S.R. Rakkappan, S. Sivan, V. Pethurajan, A. Aditya, and H. Mittal, Preparation and Thermal Properties of Encapsulated 1-Decanol for Low-Temperature Heat Transfer Fluid Application, Colloids Surf. A Physicochem. Eng. Asp., 2021, 614, p 126167.

    Article  CAS  Google Scholar 

  42. S. Azimipour, S. Ghaedi, Z. Mehrabi, S.A. Ghasemzadeh, M. Heshmati, N. Barikrow, F. Attar, and M. Falahati, Heme Degradation and Iron Release of Hemoglobin and Oxidative Stress of Lymphocyte Cells in the Presence of Silica Nanoparticles, Int. J. Biol. Macromol., 2018, 118, p 800–807.

    Article  CAS  Google Scholar 

  43. J. Liu, X.L. Zou, Z.D. Cai, Z.Z. Peng, and Y.J. Xu, Polymer Based Phase Change Material for Photo-Thermal Utilization, Sol. Energy Mater. Sol. Cells, 2021, 220, p 110852.

    Article  CAS  Google Scholar 

  44. J. Du, B. Nie, Y. Zhang, Z. Du, I. Wang, and Y. Ding, Cooling Performance of a Thermal Energy Storage-Based Portable Box for Cold Chain Applications, J. Energy Storage, 2020, 28, p 101238.

    Article  Google Scholar 

  45. N. Lin, C. Li, D. Zhang, Y. Li, and J. Chen, Emerging Phase Change Cold Storage Materials Derived from Sodium Sulfate Decahydrate, Energy, 2022, 245, p 123294.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Ministry of Education (Singapore) through the Research Centre of Excellence program (Award EDUN C-33-18-279-V12, Institute for Functional Intelligent Materials), China High-end foreign expert program (G2022035007L),  National Natural Science Foundation of Chongqing (2022NSCQ-MSX1165). KSN is grateful to the Royal Society (UK, grant number RSRP\R\190000) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Q., Cao, W., Zhaxi, D. et al. Application of 1-Decanol Loaded in Silica Aerogel and Expanded Graphite Composite Phase Change Materials in Cold Chain Transport Portable Boxes. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08301-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08301-w

Keywords

Navigation