Skip to main content

Advertisement

Log in

Development of Ternary Hydroxyapatite-Al2O3-TiO2 Nanocomposite Coating on Mg Alloy by Electrophoretic Deposition Method

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, ternary hydroxyapatite (HA)-Al2O3-TiO2 nanocomposite coating and HA nano-coating have been developed on Mg alloy by the electrophoretic deposition (EPD) method for temporary bioimplant application. Following this, a post-heat-treatment has been done at 250 °C for 2 h. Detailed microstructural studies indicate uniform deposition of coating with the presence of porosities (area fraction-16%), agglomerated particles of size range 0.3-1.8 μm and micro-cracks in composite coating. However, in HA-coated samples, the presence of porosities (area fraction-25%) and particles of size range 0.2-1.4 μm are observed. The phase evaluation shows the presence of HA, Al2O3, TiO2, and Mg phases in the composite coating, whereas presence of HA and Mg phases in HA coating. The residual stress is tensile in nature with a value 88 MPa for composite coating and compressive in nature with a value − 82 MPa for HA coating. The hydrophilicity increases after applying the coating in terms of a decrease in contact angle from 66° for as received Mg alloy to 20-42°, where 42° for HA coating and 20° for composite coating. Corrosion studies reveal that the corrosion potential (Ecorr) of composite coating is marginally shifted toward the negative direction (− 1.3 V(SCE)) as compared to HA coating (− 1.2 V(SCE)). The corrosion rate decreases from 399 mpy for HA coating to 88 mpy for composite coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Hiromoto and M. Tomozawa, Corrosion Behavior of Magnesium with Hydroxyapatite Coatings Formed by Hydrothermal Treatment, Mater. Trans., 2010, 51, p 2080–2087. https://doi.org/10.2320/matertrans.M2010192

    Article  CAS  Google Scholar 

  2. S.A. Salman, K. Kuroda, and M. Okido, Preparation and Characterization of Hydroxyapatite Coating on AZ31 Mg Alloy for Implant Applications, Bioinorgan. Chem. Appl., 2013, 2013, p 1–6. https://doi.org/10.1155/2013/175756

    Article  CAS  Google Scholar 

  3. M. Ali, M.A. Hussein, and N. Al-Aqeeli, Magnesium-Based Composites and Alloys for Medical Applications: A Review of Mechanical and Corrosion Properties, J. Alloys Compd., 2019, 792, p 1162–1190. https://doi.org/10.1016/j.jallcom.2019.04.080

    Article  CAS  Google Scholar 

  4. C. Zhang, J. Yang, Z. Quan, P. Yang, C. Li, Z. Hou, and J. Lin, Hydroxyapatite nano- and Microcrystals with Multiform Morphologies: Controllable Synthesis and Luminescence Properties, Cryst. Growth Des, 2009, 9, p 2725–3273. https://doi.org/10.1021/cg801353n

    Article  CAS  Google Scholar 

  5. B. Ghiasi, Y. Sefidbakht, S. Mozaffari-Jovin, B. Gharehcheloo, M. Mehrarya, A. Khodadadi, M. Rezaei, S.O. Ranaei Siadat, and V. Uskokovi’c, Hydroxyapatite as a Biomaterial–a Gift that Keeps on Giving, Drug Dev Cnd. Pharm., 2020, 46, p 1035–1062. https://doi.org/10.1080/03639045.2020.1776321

    Article  CAS  Google Scholar 

  6. C.Y. Chong, T.A. Bakar, N.A. Fadil, and R. Hussain, Electrophoretic Deposition of Hydroxyapatite Coatings on AZ31: The Effect of Nanoparticle Multiple Coating Approach, Adv. Mater. Research, 2015, 1125, p 484–488. https://doi.org/10.4028/www.scientific.net/AMR.1125.484

    Article  Google Scholar 

  7. K.D. Patel, R.K. Singh, J.H. Lee, and H.W. Kim, Electrophoretic Coatings of Hydroxyapatite with Various Nanocrystal Shapes, Mater. Lett., 2019, 234, p 148–154. https://doi.org/10.1016/j.matlet.2018.09.066

    Article  CAS  Google Scholar 

  8. I. Aydin, A.I. Bahçepinar, and C. Gül, Surface Characterization of EPD Coating on AZ91 Mg Alloy Produced by Powder Metallurgy, Rev. Metal., 2020, 56, p 176. https://doi.org/10.3989/revmetalm.176

    Article  CAS  Google Scholar 

  9. I. Antoniac, F. Miculescu, C. Cotrut, A. Ficai, J.V. Rau, E. Grosu, A. Antoniac, C. Tecu, and I. Cristescu, Controlling the Degradation Rate of Biodegradable Mg-Zn-Mn Alloys for Orthopedic Applications by Electrophoretic Deposition of Hydroxyapatite Coating, Materials, 2020, 13(2), p 263. https://doi.org/10.3390/ma13020263

    Article  CAS  Google Scholar 

  10. Q. Tayyabaa, M. Shahzada, A.Q. Butt, R. Dina, M. Khanb, and A.H. Qureshia, The Influence of Electrophoretic Deposition of HA on Mg-Zn-Zr Alloy on its in-vitro Degradation Behaviour in the Ringer’s Solution, Surf. & Coat. Tech., 2019, 375, p 197–204. https://doi.org/10.1016/j.surfcoat.2019.07.014

    Article  CAS  Google Scholar 

  11. D. Khazeni, M. Saremi, and R. Soltani, Development of HA-CNTs Composite Coating on AZ31 Magnesium Alloy by Cathodic Electrodeposition. Part 1: Microstructural and Mechanical Characterization, Ceram. Int., 2019, 45, p 11174–11185. https://doi.org/10.1016/j.ceramint.2019.02.143

    Article  CAS  Google Scholar 

  12. R. Askarnia, S. Roueini Fardi, M. Sobhani, and H. Staji, Ternary hydroxyapatite/chitosan/graphene Oxide Composite Coating on AZ91D Magnesium Alloy BY Electrophoretic Deposition, Ceram. Int., 2021, 47, p 27071–27081. https://doi.org/10.1016/j.ceramint.2021.06.120

    Article  CAS  Google Scholar 

  13. W. Qin, A. Kolooshani, A. Kolahdooz, S. Saber-Samandari, S. Khazaei, A. Khandan, F. Ren, and D. Toghraie, Coating the Magnesium Implants with Reinforced Nanocomposite Nanoparticles for Use in Orthopedic Applications, Colloids Surf A: Physicochem Eng Aspects, 2021, 621, p 126581. https://doi.org/10.1016/j.colsurfa.2021.126581

    Article  CAS  Google Scholar 

  14. S. Singh, G. Singh, and N. Bala, Electrophoretic Deposition of Fe3O4 Nanoparticles Incorporated Hydroxyapatite-bioglass-chitosan Nanocomposite Coating on AZ91 Mg Alloy, Mater. Today Commun., 2021, 26, p 101870. https://doi.org/10.1016/j.mtcomm.2020.101870

    Article  CAS  Google Scholar 

  15. A. Saadati, B.N. Khiarak, A.A. Zahraei, A. Nourbakhsh, and H. Mohammadzadeh, Electrochemical Characterization of Electrophoretically Deposited Hydroxyapatite/chitosan/graphene oxide Composite Coating on Mg Substrate, Surfaces and Interfaces, 2021, 25, p 101290. https://doi.org/10.1016/j.surfin.2021.101290

    Article  CAS  Google Scholar 

  16. N. Asgari and M. Rajabi, Enhancement of Mechanical Properties of Hydroxyapatite Coating Prepared by Electrophoretic Deposition Method, Int. J. Appl. Ceram. Technol., 2021, 18, p 147–153. https://doi.org/10.1111/ijac.13638

    Article  CAS  Google Scholar 

  17. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. Prentice-Hall, New York, 2001.

    Google Scholar 

  18. W. Xia, C. Lindahl, J. Lausmaa, and H. Engqvist, Biomimetic Hydroxyapatite Deposition on Titanium Oxide Surfaces for Biomedical Application, Adv. Biomimet. Chap., 2011, 20, p 430–448. https://doi.org/10.5772/14900

    Article  Google Scholar 

  19. H. Lee and G. Kim, Three-dimensional Plotted PCL/β-TCP Scaffolds Coated with a Collagen Layer: Preparation, Physical Properties and in vitro Evaluation for Bone Tissue Regeneration, J. Mater. Chem., 2011, 21, p 6305–6312. https://doi.org/10.1039/C0JM03414BW

    Article  CAS  Google Scholar 

  20. L.P. Corrales, M.L. Esteves and J.E. Ramirez-Vick, Scaffold Design for Bone Regeneration, J. Nanosci. Nanotechnol., 2014, 14, p 15–56. https://doi.org/10.1166/jnn.2014.9127

    Article  CAS  Google Scholar 

  21. J.A. Hashaikeh, Szpunar, Electrophoretic Fabrication of Thermal Barrier Coatings, J. Coat. Technol. Res., 2011, 8(2), p 161–169. https://doi.org/10.1007/s11998-010-9277-y

    Article  CAS  Google Scholar 

  22. Y. Guo, Y. Su, S. Jia, G. Sun, R. Gu, D. Zhu, G. Li and J. Lian, Hydroxyapatite/Titania Composite Coatings on Biodegradable Magnesium Alloy for Enhanced Corrosion Resistance, Cytocompatibility and Antibacterial Properties, J. lectrochem. Society, 2018, 165, p 962–972. https://doi.org/10.1149/2.1171814

    Article  Google Scholar 

  23. L.F. Cooper, Y. Zhou, J. Takebe, J. Guo, A. Abron, A. Holmén and J.E. Ellingsen, Fluoride Modification Effects on Osteoblast Behavior and Bone Formation at TiO2 grit-blasted c.p. Titanium Endosseous Implants, Biomaterials, 2006, 6, p 926–936. https://doi.org/10.1016/j.biomaterials.2005.07.009

    Article  CAS  Google Scholar 

  24. X. Rausch-fan, Z. Qu, M. Wieland, M. Matejka and A. Schedle, Differentiation and Cytokine Synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces, Dent. Mater., 2008, 24(1), p 102–110.

    Article  CAS  Google Scholar 

  25. P. Amaravathy, S. Sathyanarayanan, S. Sowndarya and N. Rajendrana, Bioactive HA/TiO2 Coating on Magnesium Alloy for Biomedical Applications, Ceram. Int., 2014, 40, p 6617–6630. https://doi.org/10.1016/j.ceramint.2013.11.119

    Article  CAS  Google Scholar 

  26. H. Amiri, I. Mohammadi and A. Afshar, Electrophoretic Deposition of Nano-Zirconia Coating on AZ91D Magnesium Alloy for Bio-corrosion Control Purposes, Surf. & Coat. Tech., 2017, 311, p 182–190. https://doi.org/10.1016/j.surfcoat.2016.12.103

    Article  CAS  Google Scholar 

  27. G.C.A.M. Janssen and J.D. Kamminga, Stress in Hard Metal Films, Appl. Phys. Lett., 2004, 85(15), p 3086–3088. https://doi.org/10.1063/1.1807016

    Article  CAS  Google Scholar 

  28. E.R. Edreira, J. Wolke, J. te Riet, G. Kotnur, G.C.A.M. Janssen, J. Jansen and J. van den Beucken, Residual Stress Evaluation Within Hydroxyapatite Coatings of Different Micrometer Thicknesses, Surf. Coat. Technol., 2015, 266, p 177–182.

    Article  Google Scholar 

  29. X. Zheng, Q. Liu, H. Ma, S. Das, Y. Gua and L. Zhang, Probing Local Corrosion Performance of sol-gel/MAO Composite Coating on Mg Alloy, Surf. Coat. Technol., 2018, 347, p 286–296. https://doi.org/10.1016/j.surfcoat.2018.05.010

    Article  CAS  Google Scholar 

  30. B. Niu, P. Shi, E. Shanshan, D. Wei, Q. Li and Y. Chen, Preparation and Characterization of HA sol–gel Coating on MAO Coated AZ31 Alloy, Surface and Coatings Technol., 2016, 286, p 42–48. https://doi.org/10.1016/j.surfcoat.2015.11.056

    Article  CAS  Google Scholar 

  31. E.S. Bogya, Z. Károlyc and R. Barabásd, Atmospheric Plasma Sprayed Silica–hydroxyapatite Coatings on Magnesium Alloy Substrates, Ceram. Int., 2015, 41, p 6005–6012. https://doi.org/10.1016/j.ceramint.2015.01.041

    Article  CAS  Google Scholar 

  32. M. Alaei, M. Atapour, and S. Labbaf, Electrophoretic Deposition of Chitosan-Bioactive Glass Nanocomposite Coatings on AZ91 Mg Alloy for Biomedical Applications, Prog. Org. Coat., 2020, 147, p 105803. https://doi.org/10.1016/j.porgcoat.2020.105803

    Article  CAS  Google Scholar 

  33. S. Spriano, M. Bosetti, M. Bronzoni, E. Verne, G. Maina, V. Bergo and M. Cannas, Surface Properties and Cell Response of Low Metal Ion Release Ti-6Al-7Nb Alloy After Multi-Step Chemical and Thermal Treatments, Biomaterials, 2005, 26, p 1219–1229. https://doi.org/10.1016/j.biomaterials.2004.04.026

    Article  CAS  Google Scholar 

  34. C.N. Cao, Principle of corrosion electrochemistry, Chemistry industry press, Beijing, 2004.

    Google Scholar 

  35. H. Farnoush, J.A. Mohandesi and H. Çimenoğlu, Micro-scratch and Corrosion Behavior of Functionally Graded HA-TiO2 Nanostructured Composite Coatings Fabricated by Electrophoretic Deposition, J. Mech Behav Biomed. Mater., 2015, 46, p 31–40.

    Article  CAS  Google Scholar 

  36. Y. Guo, Y. Su, S. Jia, G. Sun, R. Gu, D. Zhu et al., Hydroxyapatite/Titania Composite Coatings on Biodegradable Magnesium Alloy for Enhanced Corrosion Resistance, Cytocompatibility and Antibacterial Properties, J. Electrochem. Soc., 2018, 165(14), p C962–C972. https://doi.org/10.1149/2.1171814jes

    Article  CAS  Google Scholar 

  37. Y.W. Song, D.Y. Shan and E.H. Han, Electrodeposition of Hydroxyapatite Coating on AZ91D Magnesium Alloy for Biomaterial Application, Mater. Lett., 2008, 62, p 3276–3279.

    Article  CAS  Google Scholar 

  38. H.X. Wang, S.K. Guan, X. Wang, C.X. Ren and L.G. Wang, In Vitro Degradation and Mechanical Integrity of Mg–Zn–Ca Alloy Coated with Ca-deficient Hydroxyapatite by the Pulse Electrodeposition Process, Acta Biomater., 2010, 6, p 1743–1748.

    Article  CAS  Google Scholar 

  39. A. Abdal-haya, N. Barakat and J.K. Lim, Hydroxyapatite-doped Poly(lactic acid) Porous Film Coating for Enhanced Bioactivity and Corrosion Behavior of AZ31 Mg Alloy for Orthopedic Applications, Ceram. Int., 2013, 39, p 183–195.

    Article  Google Scholar 

  40. B. Yuan, H. Chen, R. Zhao, X. Deng, G. Chen et al., Construction of a Magnesium Hydroxide/graphene oxide/hydroxyapatite Composite Coating on Mg–Ca–Zn–Ag Alloy to Inhibit Bacterial Infection and Promote Bone Regeneration, Bioactive Mater., 2022, 18, p 354–367.

    Article  CAS  Google Scholar 

  41. Q. Liu, S. Huang, J.P. Matinlinna, Z. Chen and H. Pan, Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches, Biomed. Res. Int., 2013, 2013, p 1–13. https://doi.org/10.1155/2013/929748

    Article  CAS  Google Scholar 

  42. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga and K. De Groot, The Role of Hydrated Silica, Titania, and Alumina in Inducing Apatite on Implants, J. Biomed. Mater. Res., 1994, 28(1), p 7–15. https://doi.org/10.1002/jbm.820280103

    Article  CAS  Google Scholar 

  43. R. Ahmadi and A. Afshar, In vitro study: Bond Strength, Electrochemical and Biocompatibility Evaluations of TiO2/Al2O3 Reinforced Hydroxyapatite sol–gel Coatings on 316L SS, Surf. Coat. Technol., 2021, 405, p 126594.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Partial financial supports from the Ministry of Human Resource Development, N. Delhi (to Sumit Kumar, Rakesh Kumar Gupta) and Science and Engineering Research Board, N. Delhi (to Renu Kumari) are gratefully acknowledged. Authors are grateful to the R&D, Tata steel, Jamshedpur, and CRF, IIT Khargpur for their help in conducting some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Kumari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Gupta, R.K., Archana, K. et al. Development of Ternary Hydroxyapatite-Al2O3-TiO2 Nanocomposite Coating on Mg Alloy by Electrophoretic Deposition Method. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08290-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08290-w

Keywords

Navigation