Skip to main content
Log in

Molecular Dynamics Simulation Study on the Effect of Mn on the Tensile Behavior of a Ferrite/Austenite Iron Bicrystal

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of Mn on duplex stainless steel is of great importance in the development of lean duplex stainless steel. In this paper, we applied molecular dynamics simulations to quantitatively investigate the effect of Mn addition on the tensile behavior of ferritic/austenitic (bcc–fcc) iron duplexes as a model system for duplex stainless steels. We found that dislocations originate at grain boundaries and most of the initial dislocations in the grain boundaries are Shockley partial dislocations. The temperature and the number of dislocations conform to a normal distribution relationship. In addition, the tensile deformation mechanism of duplex stainless steel is dominated by both phase transformation and dislocation activity. Mn can improve the tensile properties of the material by delaying the arrival of plastic deformation, increasing the dislocation density to improve the strength of the model, and promoting the phase transformation mechanism of fcc → hcp → bcc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Sahraoui, M. Hadji and M. Yahi, Design and Deformation Behavior of High Strength Fe-Mn-Al-Cr-C Duplex Steel, Mater. Sci. Eng. A., 2009, 523, p 271–276. https://doi.org/10.1016/j.msea.2009.06.022

    Article  CAS  Google Scholar 

  2. N.R. Baddoo, Stainless Steel in Construction: a Review of Research, Applications, Challenges and Opportunities, J. Constr. Steel Res., 2008, 64, p 1199–1206. https://doi.org/10.1016/j.jcsr.2008.07.011

    Article  Google Scholar 

  3. J. Olsson and M. Snis, Duplex–a New Generation of Stainless Steels for Desalination Plants, Desalination, 2007, 205, p 104–113. https://doi.org/10.1016/j.desal.2006.02.051

    Article  CAS  Google Scholar 

  4. G. Chail and P. Kangas, Super and Hyper Duplex Stainless Steels: Structures, Properties and Applications, Procedia Struct. Integr., 2016, 2, p 1755–1762. https://doi.org/10.1016/j.prostr.2016.06.221

    Article  Google Scholar 

  5. Y. Yang, H. Qian and Y. Su, Effect of Mn Addition on Deformation Behaviour of 23% Cr Low Nickel Duplex Stainless Steel, Mater. Charact., 2018, 145, p 606–618. https://doi.org/10.1016/j.matchar.2018.07.028

    Article  CAS  Google Scholar 

  6. S. Yusen, Y. Yinhui, C. Jianchun and B. Yuliang, Research on Hot Working Behavior of Low-Nickel Duplex Stainless Steel 2101, Acta Metall. Sin., 2018, 54, p 485–493. https://doi.org/10.1190/0412.1961.2017.00151

    Article  Google Scholar 

  7. Y. Yang and K. Ni, Investigation on the Precipitation and Corrosion Behaviour of 19% Cr Economical Duplex Stainless Steel with Mn Addition by Aging at 800 Degrees C, Ironmak. Steelmak., 2021, 48, p 200–209. https://doi.org/10.1080/03019233.2020.1774223

    Article  CAS  Google Scholar 

  8. J.-Y. Park and Y.-S. Ahn, Effect of Ni and Mn on the Mechanical Properties of 22Cr MICRO-Duplex Stainless Steel, Acta Metall. Sin.-Engl. Lett., 2015, 28, p 32–38. https://doi.org/10.1007/s40195-014-0162-z

    Article  CAS  Google Scholar 

  9. S. Jun, Q. Cairang, W. Zhilin, L. Juncheng and L. Guoqing, Heat Treatment for High Mn and Low Ni Stainless Steel, Heat Treat. Met., 2015, 40, p 134–137.

    Google Scholar 

  10. A.I.Z. Farahat, O. Hamed, A. El-Sisi and M. Hawash, Effect of Hot Forging and Mn Content on Austenitic Stainless Steel Containing High Carbon, Mater. Sci. Eng. -Struct. Mater. Prop. Microstruct. Process, 2011, 530, p 98–106. https://doi.org/10.1016/j.msea.2011.09.049

    Article  CAS  Google Scholar 

  11. H. Liu, J. Liu, B. Wu, Y. Shen, Y. He, H. Ding and X. Su, Effect of Mn and Al Contents on Hot Ductility of High Alloy Fe-xMn-C-yAl Austenite TWIP Steels, Mater. Sci. Eng. -Struct. Mater. Prop. Microstruct. Process, 2017, 708, p 360–374. https://doi.org/10.1016/j.msea.2017.10.001

    Article  CAS  Google Scholar 

  12. M. Parrinello and A. Rahman, Polymorphic Transitions in Single-Crystals–a New Molecular-Dynamics Method, J. Appl. Phys., 1981, 52, p 7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  13. M. Payne, M. Teter, D. Allan, T. Arias and J. Joannopoulos, Iterative Minimization Techniques for Abinitio Total-Energy Calculations–Molecular-Dynamics and Conjugate Gradients, Rev. Mod. Phys., 1992, 64, p 1045–1097. https://doi.org/10.1103/RevModPhys.64.1045

    Article  CAS  Google Scholar 

  14. A. Rappe, C. Casewit, K. Colwell, W. Goddard and W. Skiff, Uff, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations, J. Am. Chem. Soc., 1992, 114, p 10024–10035. https://doi.org/10.1021/ja00051a040

    Article  CAS  Google Scholar 

  15. S. Vinnarasi, R. Radhika, S. Vijayakumar and R. Shankar, Structural Insights into the Anti-Cancer activity of Quercetin on G-Tetrad, Mixed G-tetrad, and G-quadruplex DNA Using Quantum Chemical and Molecular Dynamics Simulations, J. Biomol. Struct. Dyn., 2020, 38, p 317–339. https://doi.org/10.1080/07391102.2019.1574239

    Article  CAS  Google Scholar 

  16. P. Eastman, J. Swails, J.D. Chodera, R.T. McGibbon, Y. Zhao, K.A. Beauchamp, L.-P. Wang, A.C. Simmonett, M.P. Harrigan, C.D. Stern, R.P. Wiewiora, B.R. Brooks and V.S. Pande, OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics, Plos Comput. Biol., 2017, 13, e1005659. https://doi.org/10.1371/journal.pcbi.1005659

    Article  CAS  Google Scholar 

  17. A.T. AlMotasem, M. Posselt and J. Bergstrom, Nanoindentation and Nanoscratching of a Ferrite/Austenite iron bi-Crystal: an Atomistic Study, Tribol. Int., 2018, 127, p 231–239. https://doi.org/10.1016/j.triboint.2018.06.017

    Article  CAS  Google Scholar 

  18. T. Fukino and S. Tsurekawa, In-Situ SEM/EBSD Observation of Alpha/Gamma Phase Transformation in Fe-Ni Alloy, Mater. Trans., 2008, 49, p 2770–2775. https://doi.org/10.2320/matertrans.MAW200824

    Article  CAS  Google Scholar 

  19. Y. Lu, H. Xie, J. Wang, F. Jia, F. Lin, C. Zhou, J. Xu, J. Han and Z. Jiang, Ex Situ Analysis of High-Strength Quenched and Micro-Alloyed Steel During Austenitising Bending Process: Numerical Simulation and Experimental Investigation, Int. J. Adv. Manuf. Technol., 2022, 120, p 8293–8309. https://doi.org/10.1007/s00170-022-09261-6

    Article  Google Scholar 

  20. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117, p 1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  21. Y.-M. Kim, Y.-H. Shin and B.-J. Lee, Modified Embedded-Atom Method Interatomic Potentials for Pure Mn and the Fe–Mn System, Acta Mater., 2009, 57, p 474–482. https://doi.org/10.1016/j.actamat.2008.09.031

    Article  CAS  Google Scholar 

  22. M. Jo, Y.M. Koo and S.K. Kwon, Determination of the Deformation Mechanism of Fe-Mn Alloys, Met. Mater. Int., 2015, 21, p 227–231. https://doi.org/10.1007/s12540-015-4320-2

    Article  CAS  Google Scholar 

  23. S. Raman, J.J. Hoyt, P. Saidi and M. Asta, Molecular Dynamics study of the Thermodynamic and Kinetic Properties of the Solid-Liquid Interface in FeMn, Comput. Mater. Sci., 2020, 182, 109773. https://doi.org/10.1016/j.commatsci.2020.109773

    Article  CAS  Google Scholar 

  24. W. Hoover, Canonical Dynamics–Equilibrium Phase-Space Distributions, Phys. Rev. A., 1985, 31, p 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  25. S. Nose, A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods, J. Chem. Phys., 1984, 81, p 511–519. https://doi.org/10.1063/1.447334

    Article  CAS  Google Scholar 

  26. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2009, 18, 015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  27. H. Tsuzuki, P.S. Branicio and J.P. Rino, Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood, Comput. Phys. Commun., 2007, 177, p 518–523. https://doi.org/10.1016/j.cpc.2007.05.018

    Article  CAS  Google Scholar 

  28. A. Stukowski and K. Albe, Extracting Dislocations and Non-Dislocation Crystal Defects From Atomistic Simulation Data, Model. Simul. Mater. Sci. Eng., 2010, 18, 085001. https://doi.org/10.1088/0965-0393/18/8/085001

    Article  CAS  Google Scholar 

  29. Y.H. Park and Z.H. Lee, The Effect of Nitrogen and Heat Treatment on the Microstructure and Tensile Properties of 25Cr-7Ni-1.5Mo-3W-xN Duplex Stainless Steel Castings, Mater. Sci. Eng. -Struct. Mater. Prop. Microstruct. Process., 2001, 297, p 78–84. https://doi.org/10.1016/S0921-5093(00)01263-6

    Article  Google Scholar 

  30. G. Chalant and L. Remy, Slip Character and Low-Cycle Fatigue Behaviour–Influence of Fcc Twinning and Strain-Induced Fcc-]hcp Martensitic-Transformation, Acta Metall., 1980, 28, p 75–88. https://doi.org/10.1016/0001-6160(80)90042-5

    Article  CAS  Google Scholar 

  31. T.S. Byun, On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels, Acta Mater., 2003, 51, p 3063–3071. https://doi.org/10.1016/S1359-6454(03)00117-4

    Article  CAS  Google Scholar 

  32. M. Tang and J. Marian, Temperature and High Strain Rate Dependence of Tensile Deformation Behavior in Single-Crystal Iron From Dislocation Dynamics Simulations, Acta Mater., 2014, 70, p 123–129. https://doi.org/10.1016/j.actamat.2014.02.013

    Article  CAS  Google Scholar 

  33. S. Martin, S. Wolf, U. Martin, L. Krueger and D. Rafaja, Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature, Metall. Mater. Trans. -Phys. Metall Mater. Sci., 2016, 47A, p 49–58. https://doi.org/10.1007/s11661-014-2684-4

    Article  CAS  Google Scholar 

  34. Y. Lu, H. Xie, J. Wang, Z. Li, F. Lin, J. Han, J. Han and Z. Jiang, Characteristic flow Behaviour Prediction and Microstructure Analysis of a Commercial Si-Cr Micro-Alloyed Spring Steel Under Isothermal Compression, Vacuum, 2021, 186, 110066. https://doi.org/10.1016/j.vacuum.2021.110066

    Article  CAS  Google Scholar 

  35. Y. Lu, H. Xie, J. Wang, Z. Li, F. Jia, H. Wu, J. Han and Z. Jiang, Influence of Hot Compressive Parameters on Flow Behaviour and Microstructure Evolution in a Commercial Medium Carbon Micro-Alloyed Spring Steel, J. Manuf. Process., 2020, 58, p 1171–1181. https://doi.org/10.1016/j.jmapro.2020.09.021

    Article  Google Scholar 

  36. Y. Lu, H. Xie, J. Wang, F. Jia, Z. Li, H. Kamali, J. Xu, J. Han and Z. Jiang, Design of a Novel Austenitising Bending Process in Forming Characteristics of High-Strength Quenched and Micro-Alloyed Steel: Experiment and Simulation, Mater. Des., 2022, 215, p 110458. https://doi.org/10.1016/j.matdes.2022.110458

    Article  CAS  Google Scholar 

  37. S. Karewar, J. Sietsma and M.J. Santofimia, Effect of Pre-Existing Defects in the Parent fcc Phase on Atomistic Mechanisms During the Martensitic Transformation in Pure Fe: a Molecular Dynamics Study, Acta Mater., 2018, 142, p 71–81. https://doi.org/10.1016/j.actamat.2017.09.049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Guizhou Provincial General Undergraduate Higher Education Technology Supporting Talent Support Program (KY (2018)043), the National Natural Science Foundation of China (10502025, 10872087, 11272143), the Program for Chinese New Century Excellent Talents in university (NCET-12-0712), and the Key University Science Research Project of Jiangsu Province (17KJA130002).

Author information

Authors and Affiliations

Authors

Contributions

JZ contributed to funding acquisition, resources, conceptualization, methodology. WL contributed to conceptualization, methodology, resources, software, supervision, validation, writing–original draft, writing–review and editing. LW contributed to investigation and writing-original draft. BZ contributed to investigation and writing-original draft. JJ contributed to investigation, formal analysis, writing-review and editing. TH contributed to investigation, formal analysis, writing–original draft.

Corresponding author

Correspondence to Jianqiu Zhou.

Ethics declarations

Conflict of interest

There are no financial conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Han, T., Wang, L. et al. Molecular Dynamics Simulation Study on the Effect of Mn on the Tensile Behavior of a Ferrite/Austenite Iron Bicrystal. J. of Materi Eng and Perform 32, 6810–6820 (2023). https://doi.org/10.1007/s11665-022-07582-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07582-x

Keywords

Navigation