Skip to main content
Log in

Pitting Behavior of L245N Pipeline Steel by Microbiologically Influenced Corrosion in Shale Gas Produced Water with Dissolved CO2

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The perforation of shale gas transportation pipelines occurred frequently in the form of pitting corrosion because of microbiologically influenced corrosion (MIC). In this study, the pitting corrosion behavior of L245N pipeline steel in shale gas produced water with sulfate reducing bacteria (SRB) and iron oxidizing bacteria (IOB) was studied. The results indicate that the development of pitting corrosion can be divided into three stages. The compact biofilm was formed in the second stage and facilitated the appearance of pits. The major mechanism of pit growth was electron uptake from elemental iron by sessile SRB settled in the biofilm. The corrosion prevention strategy was briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Sima, I.S. Cole, Y.S. Choi and N. Birbilis, A Review of the Protection Strategies Against Internal Corrosion for the Safe Transport of Supercritical CO2 via Steel Pipelines for CCS Purposes, Int. J. Greenh. Gas. Con., 2014, 28, p 185–199.

    Article  Google Scholar 

  2. J.Z. Duan, S.R. Wu, X.J. Zhang, G.Q. Huang, M. Du and B.R. Hou, Corrosion of Carbon Steel Influenced by Anaerobic Biofilm in Natural Seawater, Electrochim. Acta., 2008, 54, p 22–28.

    Article  CAS  Google Scholar 

  3. M. Yue and Y.C. Wang, Corrosion and Protection of Tubing and Gathering Pipeline for a Shale Gas Field, Drill. Prod. Technol., 2018, 41, p 125–127.

    Google Scholar 

  4. E. Ura-Bińczyk, A. Dobkowska, M. Płocińska, T. Płociński, B. Adamczyk-Cieślak, B. Mazurkiewicz, W. Solarski and J. anaś, J. Mizera., The Influence of Grain Refinement on the Corrosion Rate of Carbon Steels in Fracturing Fluids Used in Shale Gas Production, Mater. Corros, 2017, 68, p 1190–1199.

    Article  Google Scholar 

  5. X. Jiang, Q. Zhang, D.R. Qu, K. Xu and X.L. Song, Corrosion Behavior of L360 N and L415 N Mild Steel in a Shale Gas Gathering Environment – Laboratory and On-site Studies, J. Nat. Gas. Sci. Eng., 2020, 82, 103492.

    Article  CAS  Google Scholar 

  6. M. Xie, Y.F. Tang, B. Song, W.W. Zhao and G.Y. Wu, Corrosion Evaluation and Control of a Shale Gas Gathering and Transportation system: a case study of the Changning-Weiyuan National Shale Gas Demonstration Area, Nat. Gas. Ind., 2020, 40, p 128–134.

    Google Scholar 

  7. D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Appl. Environ. Microbiol., 2014, 80, p 1226–1236.

    Article  Google Scholar 

  8. P.Y. Zhang, D.K. Xu, Y.C. Li, K. Yang and T.Y. Gu, Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel by the Desulfovibrio Vulgaris Biofilm, Bioelectrochemistry, 2015, 101, p 14–21.

    Article  CAS  Google Scholar 

  9. S.Q. Chen, P. Wang and D. Zhang, Corrosion Behavior of Copper Under Biofilm of Sulfate-Reducing Bacteria, Corros. Sci., 2014, 87, p 407–415.

    Article  CAS  Google Scholar 

  10. H. Liu, L. Xu and J. Zeng, Role of Corrosion Products in Biofilms in Microbiologically Induced Corrosion Of Carbon Steel, Br. Corros. J., 2000, 35, p 131–135.

    Article  CAS  Google Scholar 

  11. J. Wu, D. Zhang, P. Wang, Y. Cheng, S. Sun, Y. Sun and S. Chen, The influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the Corrosion of Q235 Carbon Steel in Natural Seawater, Corros. Sci., 2016, 112, p 552–562.

    Article  CAS  Google Scholar 

  12. Z.H. Dong, T. Liu and H.F. Li, Influence of EPS Isolated from Thermophilic Sulphate-Reducing Bacteria on Carbon Steel Corrosion, Biofouling, 2011, 27, p 487–495.

    Article  CAS  Google Scholar 

  13. D.K. Xu and T.Y. Gu, Carbon Source Starvation Triggered More Aggressive Corrosion Against Carbon Steel by the Desulfovibrio Vulgaris Biofilm, Int. Biodeter. Biodegr., 2014, 91, p 74–81.

    Article  CAS  Google Scholar 

  14. H. Wang, L.K. Ju, H. Castaneda, G. Cheng and B.Z. Newby, Corrosion of Carbon steel C1010 in the Presence of Iron Oxidizing Bacteria Acidithiobacillus Ferrooxidans, Corros. Sci., 2014, 89, p 250–257.

    Article  CAS  Google Scholar 

  15. H.W. Liu, C.Y. Fu, T.Y. Gu, G.A. Zhang, Y.L. Lv, H.T. Wang and H.F. Liu, Corrosion Behavior of Carbon Steel in the Presence of Sulfate Reducing Bacteria and Iron Oxidizing Bacteria Cultured in Oilfield Produced Water, Corros. Sci., 2015, 100, p 484–495.

    Article  CAS  Google Scholar 

  16. M.Y. Lv, M. Du, X. Li, Y.Y. Yue and X.C. Chen, Mechanism of Microbiologically Influenced Corrosion of X65 Steel in Seawater Containing Sulfate-reducing Bacteria and Iron-Oxidizing Bacteria, J. Mater. Res. Technol., 2019, 8, p 4066–4078.

    Article  CAS  Google Scholar 

  17. G.C. Zhu, Q. Liu, D.J. Li, C.Z. Li and F.H. Chen, Failure Analysis on Corrosion Perforation of L245N Gathering Pipeline, J. Fail. Anal. Prev., 2022, 22, p 801–806.

    Article  Google Scholar 

  18. J.H. Leng, Y.F. Cheng, K.X. Liao, Y.J. Huang, F.L. Zhou, S. Zhao, X. Liu and Q. Zou, Synergistic Effect of O2-Cl on Localized Corrosion Failure of L245N Pipeline in CO2-O2-Cl Environment, Eng. Fail. Anal., 2022, 138, 106332.

    Article  CAS  Google Scholar 

  19. Y. Hu, L. Xin, T.G. Liu and Y.H. Lu, Corrosion Behavior of L245N Standard Steel in CO2 Saturated Brine under Flow Condition, Metals, 2021, 11, p 880.

    Article  CAS  Google Scholar 

  20. M. Qin, G.X. He, K.X. Liao, Q. Zou, S. Zhao, X.H. Jiang and S.J. Zhang, CO2-O2-SRB-Cl- Multifactor Synergistic Corrosion in Shale Gas Pipelines at a Low Liquid Flow Rate, J. Mater. Eng. Perform., 2022, 31, p 4820–4835.

    Article  CAS  Google Scholar 

  21. H.W. Liu and Y.F. Cheng, Corrosion of Initial pits on Abandoned X52 Pipeline Steel in a Simulated Soil Solution Containing Sulfate-Reducing Bacteria, J. Mater. Res. Technol., 2020, 9, p 7180–7189. (in English)

    Article  CAS  Google Scholar 

  22. W.W. Dou, J.L. Liu, W.Z. Cai, D. Wang, R. Jia, S.G. Chen and T.Y. Gu, Electrochemical Investigation of Increased Carbon Steel Corrosion Via Extracellular Electron Transfer by a Sulfate Reducing Bacterium under Carbon Source Starvation, Corros. Sci., 2019, 150, p 258–267.

    Article  CAS  Google Scholar 

  23. H.W. Liu, T.Y. Gu, G.A. Zhang, W. Wang, S. Dong, Y.F. Cheng and H.F. Liu, Corrosion Inhibition of Carbon Steel in CO 2-Containing Oilfield Produced Water in the Presence of Iron-Oxidizing Bacteria and Inhibitors, Corros. Sci., 2016, 105, p 149–160.

    Article  CAS  Google Scholar 

  24. Y.J. Chen, R. Howdyshell, S. Howdyshell and L.K. Ju, Characterizing Pitting Corrosion Caused by a Long-term Starving Sulfate-Reducing Bacterium Surviving on Carbon Steel and Effects of Surface Roughness, Corrosion, 2014, 70, p 767–780.

    Article  CAS  Google Scholar 

  25. H.W. Liu and Y. Frank Cheng, Mechanism of Microbiologically Influenced Corrosion of X52 Pipeline Steel in a Wet Soil Containing Sulfate-Reduced Bacteria, Electrochim. Acta., 2017, 253, p 368–378.

    Article  CAS  Google Scholar 

  26. N.Y. Zhang, D.Z. Zeng, G.Q. Xiao, J.F. Shang, Y.Z. Liu, D.C. Long, Q.Y. He and A. Singh, Effect of Cl- Accumulation on Corrosion Behavior of Steels in H2S/CO2 Methyldiethanolamine (MDEA) Gas Sweetening Aqueous Solution, J. Nat. Gas. Sci. Eng., 2016, 30, p 444–454.

    Article  CAS  Google Scholar 

  27. H.W. Liu, C.Y. Chen, Y.X. Zhang and W.H. Li, Research Progress of Microbial Corrosion and Protection in Oil and Gas Fields, Equip. Environ. Eng., 2020, 17, p 1–8.

    Google Scholar 

  28. E.H. Sung, J.S. Han, C.M. Ahn, H.J. Seo and C.G. Kim, Biological Metal Corrosion in Saline Systems by Sulfur-Reducing and Iron-Oxidizing Bacteria, Water Qual. Res. J. Can., 2011, 46, p 321–331.

    Article  CAS  Google Scholar 

  29. L.J. Chen, J.Y. Hu, X.K. Zhong, Q. Zhang, Y. Zheng, Z. Zhang and D.Z. Zeng, Corrosion Behaviors of Q345R Steel at the Initial Stage in an Oxygen-Containing Aqueous Environment: Experiment and Modeling, Materials, 2018, 11, p 1462.

    Article  Google Scholar 

  30. L.J. Chen, W. Liu, B.J. Dong, P. Zhang, Q.H. Zhao, T.Y. Zhang, P.C. Fan and H. Li, Role of Trace Dissolved Oxygen Content in Corrosion Scale of 3Cr Steel in CO2 Aqueous Environment, J. Mater. Eng. Perform., 2022, 31, p 4864–4876.

    Article  CAS  Google Scholar 

  31. L.J. Chen, B.J. Dong, W. Liu, F. Wu, H. Li and T.Y. Zhang, Failure Analysis of Corrosion Products Formed During CO2 Pre-Corrosion of X70 and 3Cr Steels: Effect of Oxygen Contamination, Eng. Fail. Anal., 2022, 140, 106529.

    Article  CAS  Google Scholar 

  32. K.W. Gao, F. Yu, X.L. Pang, G.A. Zhang, L.J. Qiao, W.Y. Chu and M.X. Lu, Mechanical Properties of CO2 Corrosion Product Scales and their Relationship to Corrosion Rates, Corros. Sci., 2008, 50, p 2796–2803.

    Article  CAS  Google Scholar 

  33. Y. Hua, R. Barker and A. Neville, Comparison of Corrosion Behaviour for X-65 Carbon Steel in Supercritical CO2-Saturated Water and Water-Saturated/Unsaturated Supercritical CO2, J. Supercrit. Fluids., 2015, 97, p 224–237.

    Article  CAS  Google Scholar 

  34. Y. Xie, L.N. Xu, C.L. Gao, W. Chang and M.X. Lu, Corrosion Behavior of Novel 3% Cr Pipeline Steel in CO2 Top of Line Corrosion Environment, Mater. Des., 2012, 36, p 54–57.

    Article  CAS  Google Scholar 

  35. L. Wei, X.L. Pang and K.W. Gao, Effect of Small Amount of H2S on the Corrosion Behavior of Carbon Steel in the Dynamic supercritical CO2 environments, Corros. Sci., 2016, 103, p 132–144.

    Article  CAS  Google Scholar 

  36. X.Q. Lin, W. Liu, F. Wu, C.C. Xu, J.J. Dou and M.X. Lu, Effect of O2 on Corrosion of 3Cr Steel in High Temperature and High Pressure CO2-O2 Environment, Appl. Surf. Sci., 2015, 329, p 104–115.

    Article  CAS  Google Scholar 

  37. H. Venzlaff, D. Enning, J. Srinivasan, K.J.J. Mayrhofer, A.W. Hassel, F. Widdel and M. Stratmann, Accelerated Cathodic Reaction in Microbial Corrosion of Iron Due to Direct Electron Uptake by Sulfate-Reducing Bacteria, Corros. Sci., 2013, 66, p 88–96.

    Article  CAS  Google Scholar 

  38. Q.S. Li, J.H. Wang, X.T. Xing and W.B. Hu, Corrosion Behavior of X65 Steel in Seawater Containing Sulfate Reducing Bacteria Under Aerobic Conditions, Bioelectrochemistry, 2018, 122, p 40–50.

    Article  CAS  Google Scholar 

  39. R. Jia, D. Wang, P. Jin, T. Unsal, D.Q. Yang, J.K. Yang, D.K. Xu and T.Y. Gu, Effects of Ferrous Ion Concentration on Microbiologically Influenced Corrosion of Carbon Steel by Sulfate Reducing Bacterium Desulfovibrio Vulgaris, Corros. Sci., 2019, 153, p 127–137.

    Article  CAS  Google Scholar 

  40. M.A. Javed, P.R. Stoddart and S.A. Wade, Corrosion of Carbon Steel by Sulphate Reducing Bacteria: Initial Attachment and the Role of Ferrous Ions, Corros. Sci., 2015, 93, p 48–57.

    Article  CAS  Google Scholar 

  41. D. Enning, H. Venzlaff, J. Garrelfs, H.T. Dinh, V. Meyer, K. Mayrhofer, A.W. Hassel, M. Stratmann and F. Widdel, Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron Under Electroconductive Biogenic Mineral Crust, Environ. Microbiol., 2012, 14, p 1772–1787.

    Article  CAS  Google Scholar 

  42. C.Q. Ren, D.X. Liu, Z.Q. Bai and T.H. Li, Corrosion Behavior of Oil Tube Steel in Simulant Solution with Hydrogen Sulfide and Carbon Dioxide, Mater. Chem. Phys., 2005, 93, p 305–309.

    Article  CAS  Google Scholar 

  43. H.W. Liu, T.Y. Gu, G.A. Zhang, W. Wang, S. Dong, Y.F. Cheng and H.F. Liu, Corrosion Inhibition of Carbon Steel in CO2-Containing Oilfield Produced Water in the Presence of Iron-Oxidizing Bacteria and Inhibitors, Corros. Sci., 2016, 105, p 149–160.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Research Institute of Natural Cas Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanran Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, L., Tang, Y. et al. Pitting Behavior of L245N Pipeline Steel by Microbiologically Influenced Corrosion in Shale Gas Produced Water with Dissolved CO2. J. of Materi Eng and Perform 32, 5823–5836 (2023). https://doi.org/10.1007/s11665-022-07531-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07531-8

Keywords

Navigation