Skip to main content
Log in

Microstructure Evolution of ZK61m Magnesium Alloy Sheet during Erichsen Test

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

ZK-based magnesium alloy has high rigidity and excellent machinability. It is an ideal lightweight material in the field of military industry and has a broad application prospect. Traditional processing technology can't meet the special requirements of local area microstructure adjustment of sheet metal. In the experiment, the same area of the plate was subjected to several reverse Erichsen processes with a certain stamping stroke, and the local deformation area of the plate was subjected to annular tensile and compressive stress. The experimental samples were divided into two groups for microstructure characterization and comparison. The results show that the grain size in the deformed area of the plate is significantly finer than that of the original sample, and \(\langle10\overline{1}2\rangle\) tensile twins appear in some grains. In the repeated Erichsen test, the grain slip leads to the accumulation of dislocations, which increases the dislocation density and KAM value, and plays an obvious strengthening effect on the plate. Compared with the original plate, after repeated Erichsen test for three times, the dislocation strengthening effect of the plate is obvious with ultimate tensile strength increased by 26%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.-C. Suh, M.-S. Shim, K.S. Shin, and N.J. Kim, Current Issues in Magnesium Sheet Alloys: Where do we go from here?, Scripta Mater., 2014, 84–85, p 1–6.

    Article  CAS  Google Scholar 

  2. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang, What is Going on in Magnesium Alloys?, J. Mater. Sci. Technol., 2018, 34(2), p 245–247.

    Article  Google Scholar 

  3. Q. Wang, B. Jiang, A. Tang, S. Ma, Z. Jiang, Y. Chai, B. Liu, and F. Pan, Ameliorating the Mechanical Properties of Magnesium alloy: Role of Texture, Mater. Sci. Eng. A, 2017, 689, p 395–403.

    Article  CAS  Google Scholar 

  4. J. Tian, H. Lu, W. Zhang, H. Nie, Q. Shi, J. Deng, W. Liang, and L. Wang, An Effective Rolling Process of Magnesium Alloys for Suppressing Edge Cracks: Width-Limited Rolling, J. Magnes. Alloys, 2021, 10, p 2193.

    Article  Google Scholar 

  5. J. Tian, J.-F. Deng, Y. Chang, Q.-X. Shi, W. Liang, and J. Ma, A Study of Unstable Fracture of a Magnesium alloy Caused by Uneven Microstructure, Mater. Lett., 2022, 314, p 131799.

    Article  CAS  Google Scholar 

  6. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Microstructural and Textural Evolution of AZ31 Magnesium Alloy during Differential Speed Rolling, J. Alloy. Compd., 2009, 479(1), p 726–731.

    Article  CAS  Google Scholar 

  7. J.-Y. Li, J.-X. Xie, J.-B. Jin, and Z.-X. Wang, Microstructural Evolution of AZ91 Magnesium Alloy during Extrusion and Heat Treatment, Trans. Nonferrous Metals Soc. China, 2012, 22(5), p 1028–1034.

    Article  CAS  Google Scholar 

  8. J. Zou, L. Ma, W. Jia, Q. Le, G. Qin, and Y. Yuan, Microstructural and Mechanical Response of ZK60 Magnesium Alloy Subjected to Radial Forging, J. Mater. Sci. Technol., 2021, 83, p 228–238.

    Article  CAS  Google Scholar 

  9. K.S. Fong, A. Danno, M.J. Tan, and B.W. Chua, Tensile Flow Behavior of AZ31 Magnesium Alloy Processed by Severe Plastic Deformation and Post-Annealing at Moderately High Temperatures, J. Mater. Process. Technol., 2017, 246, p 235–244.

    Article  CAS  Google Scholar 

  10. J. Tian, J. Deng, R. Ma, Y. Chang, W. Liang, and J. Ma, Pre-Control of Annealing Temperature on the Uniformity of Deformed Structure of Wrought Magnesium Alloy, Mater. Lett., 2021, 305, p 130820.

    Article  CAS  Google Scholar 

  11. H. Watanabe, T. Mukai, and K. Ishikawa, Effect of Temperature of Differential Speed Rolling on Room Temperature Mechanical Properties and Texture in an AZ31 Magnesium Alloy, J. Mater. Process. Technol., 2007, 182(1), p 644–647.

    Article  CAS  Google Scholar 

  12. F. Guo, D. Zhang, X. Fan, J. Li, L. Jiang, and F. Pan, Microstructure, Texture and Mechanical Properties Evolution of Pre-Twinning Mg Alloys Sheets during Large Strain Hot Rolling, Mater. Sci. Eng., A, 2016, 655, p 92–99.

    Article  CAS  Google Scholar 

  13. Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Enhanced Formability at Elevated Temperature of a Cross-Rolled Magnesium Alloy Sheet, Mater. Sci. Eng., A, 2006, 441(1), p 349–356.

    Article  Google Scholar 

  14. Q. Yang, B. Jiang, B. Song, Z. Yu, D. He, Y. Chai, J. Zhang, and F. Pan, The Effects of Orientation Control via Tension-Compression on Microstructural Evolution and Mechanical Behavior of AZ31 Mg Alloy Sheet, J. Magnes. Alloys, 2020, 28, p 1705.

    Google Scholar 

  15. W. He, Q. Zeng, H. Yu, Y. Xin, B. Luan, and Q. Liu, Improving the Room Temperature stretch Formability of a Mg Alloy thin Sheet by Pre-Twinning, Mater. Sci. Eng., A, 2016, 655, p 1–8.

    Article  CAS  Google Scholar 

  16. J. Singh, M.-S. Kim, S.-E. Lee, E.-Y. Kim, J.-H. Kang, J.-H. Park, J.-J. Kim, and S.-H. Choi, Heterogeneity in Deformation and Twinning Behaviors Through the thickness Direction in E-form Mg Alloy Sheets during an Erichsen test, Mater. Sci. Eng., A, 2018, 729, p 370–384.

    Article  CAS  Google Scholar 

  17. C.S. Hyun, M.S. Kim, S.H. Choi, and K.S. Shin, Crystal plasticity FEM Study of twinning and slip in a Mg Single Crystal by Erichsen Test, Acta Mater., 2018, 156, p 342–355.

    Article  CAS  Google Scholar 

  18. J. Wang, M.R.G. Ferdowsi, S.R. Kada, S. Babaniaris, B. Hutchinson, P.A. Lynch, and M.R. Barnett, Appearance of Textures with a c-Axis Parallel to the Extrusion Direction in Mg Alloys, Scripta Mater., 2022, 210, p 114422.

    Article  CAS  Google Scholar 

  19. L. Zhao, B. Zhou, W. Zhu, C. Yan, Z. Jin, and X. Guo, A Comprehensive Study on the Mechanical Behavior, deformation Mechanism and Texture Evolution of Mg Alloys with Multi Texture Components, J. Alloy. Compd., 2022, 907, p 164342.

    Article  CAS  Google Scholar 

  20. S. Sanyal, P. Bhuyan, T.K. Bandyopadhyay, and S. Mandal, Insights into the Effect of Different Thermomechanical Processing on the Microstructure Phases, Texture and Tensile Properties in Mg-0.9Al-0.6Mn-0.2Si-0.1Ca Alloy, Intermetallics, 2022, 146, p 107564.

    Article  CAS  Google Scholar 

  21. J.-F. Deng, J. Tian, Y. Zhou, Y. Chang, W. Liang, and J. Ma, Plastic Deformation Mechanism and Hardening Mechanism of Rolled Rare-Earth Magnesium Alloy thin Sheet, Mater. Des., 2022, 218, p 110678.

    Article  CAS  Google Scholar 

  22. J. Tian, J. Deng, Q. Shi, Y. Chang, W. Liang, and W. Zhang, Effect of Temperature Field and Stress Field of Different Crack Behavior on Twins and Dislocations under Mg Alloy Rolling, Materials, 2021, 14(19), p 84.

    Article  Google Scholar 

  23. S.-F. Chen, H.-W. Song, S.-H. Zhang, M. Cheng, C. Zheng, and M.-G. Lee, An Effective Schmid Factor in Consideration of Combined Normal and Shear Stresses for Slip/Twin Variant Selection of Mg-3Al-1Zn alloy, Scripta Mater., 2019, 167, p 51–55.

    Article  CAS  Google Scholar 

  24. D. Xia, X. Chen, G. Huang, B. Jiang, A. Tang, H. Yang, S. Gavras, Y. Huang, N. Hort, and F. Pan, Calculation of Schmid Factor in Mg Alloys: Influence of Stress State, Scripta Mater., 2019, 171, p 31–35.

    Article  CAS  Google Scholar 

  25. W. Fu, Y. Li, S. Hu, P. Sushko, and S. Mathaudhu, Effect of Loading Path on Grain Misorientation and Geometrically Necessary Dislocation Density in Polycrystalline Aluminum Under Reciprocating Shear, Comput. Mater. Sci., 2022, 205, p 111221.

    Article  CAS  Google Scholar 

  26. B. Song, Q. Yang, T. Zhou, L. Chai, N. Guo, T. Liu, S. Guo, and R. Xin, Texture Control by 10-12 Twinning to Improve the Formability of Mg alloys: A review, J. Mater. Sci. Technol., 2019, 35(10), p 2269–2282.

    Article  Google Scholar 

  27. A. Malik, U.M. Chaudry, T. Yan, J. Long, C. Li, and Y. Wang, Achieving Higher Dynamic Mechanical Response by Adjusting Texture Through Twinning in a ZK61 Mg Alloy, J. Alloy. Compd., 2022, 902, p 163755.

    Article  CAS  Google Scholar 

  28. Z. Zhang, J. Zhang, J. Xie, S. Liu, Y. He, K. Guan, and R. Wu, Developing a low-Alloyed Fine-Grained Mg Alloy with High Strength-Ductility Based on Dislocation Evolution and Grain Boundary Segregation, Scripta Mater., 2022, 209, p 114414.

    Article  CAS  Google Scholar 

  29. Z. Zribi, H.H. Ktari, F. Herbst, V. Optasanu, and N. Njah, EBSD, XRD and SRS Characterization of a Casting Al-7wt%Si Alloy Processed by Equal Channel Angular Extrusion: Dislocation density evaluation, Mater. Charact., 2019, 153, p 190–198.

    Article  CAS  Google Scholar 

  30. J.-F. Deng, J. Tian, Y. Chang, Y. Zhou, W. Liang, J. Ma, The role of {10–12} tensile twinning in plastic deformation and fracture prevention of magnesium alloys, Mater. Sci. Eng. A, 2022, 853, p 143678.

    Article  CAS  Google Scholar 

  31. J. Tian, Q.-X. Shi, L.-X. Meng, J.-F. Deng, W. Liang, and J.-Y. Ma, Initiation and Suppression of Crack Propagation during Magnesium Alloy Rolling, Materials, 2021, 14(18), p 5217.

    Article  CAS  Google Scholar 

  32. K. Zhang, Z. Shao, and J. Jiang, Effects of Twin-Twin Interactions and Deformation Bands on the Nucleation of Recrystallization in AZ31 Magnesium Alloy, Mater. Des., 2020, 194, p 108936.

    Article  CAS  Google Scholar 

  33. T. Mizuno and H. Mulki, Changes in Surface Texture of Zinc-Coated Steel Sheets Under Plastic Deformation, Wear, 1996, 198(1), p 176–184.

    Article  CAS  Google Scholar 

  34. S. Liu, H. Liu, X. Chen, G. Huang, Q. Zou, A. Tang, B. Jiang, Y. Zhu, and F. Pan, Effect of Texture on Deformation Behavior of Heterogeneous Mg-13Gd Alloy with Strength-Ductility Synergy, J. Mater. Sci. Technol., 2022, 113, p 271–286.

    Article  Google Scholar 

  35. P. Mansoor and S.M. Dasharath, Microstructural and Mechanical Properties of Magnesium Alloy Processed by Severe Plastic Deformation (SPD) – A Review, Mater. Today: Proc., 2020, 20, p 145–154.

    CAS  Google Scholar 

  36. M.A. Hassan, M.A.E. Saleh, N. Takakura, S. Ramesh, and J. Purbolaksono, Effect of Bulge Shape on Wrinkling Formation and Strength of Stainless Steel Thin Sheet, Mater. Design, 2012, 42, p 37–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by National Natural Science Foundation of China under Grant No. U1810208; Nos. 51474152, and 52005362; Shanxi province science and technology major projects under Grant No. 20181101008; Shanxi province Science Foundation for Youths under Grant No. 20210302124659.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liang or Quan-xin Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Tian, J., Deng, Jf. et al. Microstructure Evolution of ZK61m Magnesium Alloy Sheet during Erichsen Test. J. of Materi Eng and Perform 32, 5483–5492 (2023). https://doi.org/10.1007/s11665-022-07473-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07473-1

Keywords

Navigation