Skip to main content
Log in

Need of an Inert Atmosphere for High-Energy Ball Milling of Al Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This article compares the corrosion behavior and hardness of an Al alloy (AA2024) produced by high-energy ball milling in air and high-purity Ar. The pre-alloyed AA2024 powder was milled in Ar and air atmospheres, and the produced powder was successfully consolidated to investigate the hardness and corrosion performance. Cyclic potentiodynamic polarization tests revealed higher pitting potential for the alloy milled in air. Additionally, milling in air resulted in higher hardness and thermal stability after a 1-h isothermal heat treatment at 400 and 500 °C. Our results demonstrate that a high-purity Ar atmosphere is not a requirement for all applications and milling in the air can lead to excellent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Esquivel, K.A. Darling, H.A. Murdoch, and R.K. Gupta, Corrosion and Mechanical Properties of Al-5 At. Pct Cr Produced by Cryomilling and Subsequent Consolidation at Various Temperatures, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2018, 49(7), p 3058–3065. https://doi.org/10.1007/s11661-018-4620-5.

    Article  CAS  Google Scholar 

  2. R.K. Gupta, B.S. Murty, and N. Birbilis, An Overview of High-Energy Ball Milled Nanocrystalline Aluminum Alloys, Springer, Cham, 2017.

    Book  Google Scholar 

  3. C. Vargel, Corrosion of Aluminium, Elsevier, Amsterdam, 2004.

    Book  Google Scholar 

  4. I. Polmear, D. Stjohn, J.-F. Nie, and Q. Ma, Light Alloys Metallurgy of the Light Metals, 5th ed. Butterworth-Heinemann, Oxford, 2017.

    Google Scholar 

  5. N.L. Sukiman, R.K. Gupta, R.G. Buchheit, and N. Birbilis, Influence of Microalloying Additions on Al-Mg Alloy. Part 1: Corrosion and Electrochemical Response, Corros. Eng. Sci. Technol., 2014, 49(4), p 254–262.

    Article  CAS  Google Scholar 

  6. R.K. Gupta, D. Fabijanic, T. Dorin, Y. Qiu, J.T. Wang, and N. Birbilis, Simultaneous Improvement in the Strength and Corrosion Resistance of Al via High-Energy Ball Milling and Cr Alloying, Mater. Des., 2015, 84, p 270–276. https://doi.org/10.1016/j.matdes.2015.06.120.

    Article  CAS  Google Scholar 

  7. J. Esquivel and R.K. Gupta, Review—Corrosion-Resistant Metastable Al Alloys: An Overview of Corrosion Mechanisms, J. Electrochem. Soc., 2020, 167(8), p 081504.

    Article  CAS  Google Scholar 

  8. R.K. Gupta, D. Fabijanic, R. Zhang, and N. Birbilis, Corrosion Behaviour and Hardness of in Situ Consolidated Nanostructured Al and Al-Cr Alloys Produced via High-Energy Ball Milling, Corros. Sci., 2015, 98, p 643–650. https://doi.org/10.1016/j.corsci.2015.06.011.

    Article  CAS  Google Scholar 

  9. C. Suryanarayana, Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials, Research, 2019, 2019, p 4219812. https://doi.org/10.34133/2019/4219812.

    Article  CAS  Google Scholar 

  10. R. Gupta, B. Murthy, and N. Birbilis, An Overview of High-Energy Ball Milled Nanocrystalline Aluminum Alloys, 1st ed. Springer International Publishing, Heidelberg, 2017.

    Book  Google Scholar 

  11. J. Esquivel, H.A. Murdoch, K.A. Darling, and R.K. Gupta, Excellent Corrosion Resistance and Hardness in Al Alloys by Extended Solid Solubility and Nanocrystalline Structure, Mater. Res. Lett., 2018, 6(1), p 79–83. https://doi.org/10.1080/21663831.2017.1396262.

    Article  CAS  Google Scholar 

  12. J. Esquivel and R.K. Gupta, Influence of the V Content on Microstructure and Hardness of High-Energy Ball Milled Nanocrystalline Al-V Alloys, J. Alloys Compd., 2018, 760, p 63–70. https://doi.org/10.1016/j.jallcom.2018.05.132.

    Article  CAS  Google Scholar 

  13. J. Esquivel and R.K. Gupta, Corrosion Behavior and Hardness of Al-M (M: Mo, Si, Ti, Cr) Alloys, Acta Metall. Sin. (Engl. Lett.), 2017, 30(4), p 333–341.

    Article  CAS  Google Scholar 

  14. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1), p 1–184.

    Article  CAS  Google Scholar 

  15. C.S. Witharamage, J. Christudasjustus, and R.K. Gupta, The Effect of Milling Time and Speed on Solid Solubility, Grain Size, and Hardness of Al-V Alloys, J. Mater. Eng. Perform., 2021, 30(4), p 3144–3158. https://doi.org/10.1007/s11665-021-05663-x.

    Article  CAS  Google Scholar 

  16. A. Calka, W. Kaczmarek, and J.S. Williams, Extended Solid Solubility in Ball-Milled Al-Mg Alloys, J. Mater. Sci., 1993, 28(1), p 15–18. https://doi.org/10.1007/BF00349027.

    Article  CAS  Google Scholar 

  17. M. Besterci, G. Jangg, M. Šlesár, and J. Zrník, Dispersion Strengthened Al-Al4C3 Material Prepared by Mechanical Alloying, Powder Metall. Process, 2001, 1(1), p 59–69.

    CAS  Google Scholar 

  18. V. Chak, H. Chattopadhyay, and T.L. Dora, A Review on Fabrication Methods, Reinforcements and Mechanical Properties of Aluminum Matrix Composites, J. Manuf. Process, 2020, 56(May), p 1059–1074. https://doi.org/10.1016/j.jmapro.2020.05.042.

    Article  Google Scholar 

  19. M. Takamichi, A. Kawaski, and M. Leparoux, Graphene Oxide-Reinforced Aluminum Alloy Matrix Composite Materials Fabricated by Powder Metallurgy, J. Alloys Compd., 2017, 698, p 807–813.

    Article  Google Scholar 

  20. B. Prabhu, C. Suryanarayana, L. An, and R. Vaidyanathan, Synthesis and Characterization of High Volume Fraction Al-Al2O3 Nanocomposite Powders by High-Energy Milling, Mater. Sci. Eng. A, 2006, 425, p 192–200.

    Article  Google Scholar 

  21. G.S. Frankel, X. Chen, R.K. Gupta, S. Kandasamy, and N. Birbilis, Effect of Vacuum System Base Pressure on Corrosion Resistance of Sputtered Al Thin Films Effect of Vacuum System Base Pressure on Corrosion Resistance of Sputtered Al Thin Films, J. Electrochem. Soc., 2014, 161(4), p C195–C200.

    Article  CAS  Google Scholar 

  22. H. Abdoli, M. Ghanbari, and S. Baghshahi, Thermal Stability of Nanostructured Aluminum Powder Synthesized by High-Energy Milling, Mater. Sci. Eng. A, 2011, 528(22–23), p 6702–6707. https://doi.org/10.1016/j.msea.2011.05.057.

    Article  CAS  Google Scholar 

  23. A. Valério and S.L. Morelhao, Usage of Scherrer’s Formula in X-Ray Diffraction Analysis of Size Distribution in Systems of Monocrystalline Nanoparticles, arXiv Prepr. arXiv1911.00701, 2019.

  24. L. Esteves, C.S. Witharamage, J. Christudasjustus, G. Walunj, S.P.O. Brien, and S. Ryu, Corrosion Behavior of AA5083 Produced by High-Energy Ball Milling, J. Alloys Compd., 2020, 857, p 158268. https://doi.org/10.1016/j.jallcom.2020.158268.

    Article  CAS  Google Scholar 

  25. F. Ozdemir, C.S. Witharamage, A.A. Darwish, H. Okuyucu, and R.K. Gupta, Corrosion Behavior of Age Hardening Aluminum Alloys Produced by High-Energy Ball Milling, J. Alloys Compd., 2022, 900, p 163488. https://doi.org/10.1016/j.jallcom.2021.163488.

    Article  CAS  Google Scholar 

  26. J. Christudasjustus, T. Larimian, J. Esquivel, S. Gupta, A.A. Darwish, and T. Borkar, Aluminum Alloys with High Elastic Modulus, Mater. Lett., 2022, 320, p 132292. https://doi.org/10.1016/j.matlet.2022.132292.

    Article  CAS  Google Scholar 

  27. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51, p 427–556.

    Article  CAS  Google Scholar 

  28. J. Esquivel, H.A. Murdoch, K.A. Darling, and R.K. Gupta, Excellent Corrosion Resistance and Hardness in Al Alloys by Extended Solid Solubility and Nanocrystalline Structure, Mater. Res. Lett., 2018, 3831, p 79–83.

    Article  Google Scholar 

  29. J.R. Davis, Aluminum and Aluminum Alloys, Alloying: Understanding the Basics. J.R. Davis Ed., ASM International, UK, 2001, p 351–416.

    Chapter  Google Scholar 

  30. J.A. Rotole, P.M.A. Sherwood, J.A. Rotole, and P.M.A. Sherwood, Valence Band X-Ray Photoelectron Spectroscopic Studies to Distinguish between Oxidized Aluminum Species, J. Vac. Sci. Technol. A, 1999, 17(4), p 1091–1096.

    Article  CAS  Google Scholar 

  31. C.S. Witharamage, J. Christudasjustus, J. Smith, W. Gao, and R.K. Gupta, Corrosion Behavior of an In Situ Consolidated Nanocrystalline Al-V Alloy, npj Mater. Degrad., 2022, 6(1), p 15. https://doi.org/10.1038/s41529-022-00225-5.

    Article  CAS  Google Scholar 

  32. T.R. Malow and C.C. Koch, Thermal Stability of Nanocrystalline Materials, Mater. Sci. Forum, 1996, 225–227, p 595–604.

    Article  Google Scholar 

  33. C. Suryanarayana and C.C. Koch, Nanocrystalline Materials – Current Research and Future Directions, 2000, p 5–44.

  34. B.S. Murty, M.K. Datta, and S.K. Pabi, Structure and Thermal Stability of Nanocrystalline Materials, Sādhanā, 2003, 28(April), p 23–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RKG acknowledges the financial support from the National Science Foundation (NSF-CMMI-1760204 and 2131440) under the direction of Dr. Alexis Lewis. F.O. acknowledges the support from the Scientific and Technological Research Council of Turkey (TUBITAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Gupta.

Ethics declarations

Conflict of interest

No potential competing interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, F., Christudasjustus, J., Vukkum, V.B. et al. Need of an Inert Atmosphere for High-Energy Ball Milling of Al Alloys. J. of Materi Eng and Perform 32, 3007–3013 (2023). https://doi.org/10.1007/s11665-022-07309-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07309-y

Keywords

Navigation