Skip to main content
Log in

Numerical and Experimental Comparison of Fractural Characteristics of 316L Stainless Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The fracture of a 316L stainless steel was investigated, both experimentally and numerically, by using two well-known ductile fracture criteria: Gurson-Tvergaard-Needleman (GTN) and Johnson-Cook (J-C). Tensile tests were modeled using the Ls-Opt of Ls-Dyna in order to determine the damage parameters of both models. The limit strains at various states of stress were further obtained by Forming Limit Diagram (FLD) experiments, and the fracture limits at different stress triaxialities were determined using the tensile test specimens with various notch sizes. Both of the used damage models predicted the fracture behavior very close to that of the experiments for the left side of the FLD. However, the prediction of the right side of the FLD by the models was found quite different from each other. The J-C damage model predicted the left side of the FLD with an error of 11.85% and the right side of the FLD with an error of 5%. The average error was 8.82% all over the FLD. On the other side, the errors for the GTN damage model were calculated 4.55 and 40% for the left and right side of the FLDs, respectively and 20% for all over the FLD curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheet Stretched Over Rigid Punches, ASM Trans., 1963, 56, p 25–48.

    Google Scholar 

  2. F. Ozturk and D. Lee, Analysis of Forming Limits Using Ductile Fracture Criteria, J. Mater. Process. Technol., 2004, 147(3), p 397–404.

    Article  Google Scholar 

  3. Z. Marciniak and K. Kuczynski, Limit Strains in the Processes of Stretch Forming Sheet Steel, Int. J. Mech. Sci., 1967, 9(9), p 609–620.

    Article  Google Scholar 

  4. E. Taupin, J. Breitling, W.-T. Wu, and T. Altan, Material Fracture and Burr Formation in Blanking Results of FEM Simulations and Comparison with Experiments, J. Mater. Process. Technol., 1996, 59, p 68–78.

    Article  Google Scholar 

  5. F. Kara, K. Aslantas, and A. Cicek, ANN and Multiple Regression Method-Based Modelling of Cutting Forces in Orthogonal Machining of AISI 316L Stainless Steel, Neural Comput. Appl., 2015, 26, p 237–250.

    Article  Google Scholar 

  6. F. Kara, K. Aslantas, and A. Cicek, Prediction of Cutting Temperature in Orthogonal Machining of AISI 316L Using Artificial Neural Network, Appl. Soft Comput., 2016, 38, p 64–74.

    Article  Google Scholar 

  7. I.K. Yoon, J. Jung, S.-H. Joo, T.J. Song, K.-G. Chin, M.H. Seo, S.-J. Kim, S. Lee, and H.S. Kim, Correlation Between Fracture Toughness and Stretch-Flangeability of Advanced High Strength Steels, Mater. Lett., 2016, 180, p 322–326.

    Article  CAS  Google Scholar 

  8. N.H. Han and K. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142(1), p 231–238.

    Article  CAS  Google Scholar 

  9. D. Zhang, Q. Shangguan, C.J. Xie, and F. Liu, A Modified Johnson-Cook Model of Dynamic Tensile Behaviors for 7075-T6 Aluminum Alloy, J. Alloys Compd., 2015, 619, p 186–194.

    Article  CAS  Google Scholar 

  10. S. Sahu, D.P. Mondal, M.D. Goel, and M.Z. Ansari, Finite Element Analysis of AA1100 Elasto-Plastic Behavior Using Johnson-Cook Model, Mater. Today Proc., 2018, 5(2–1), p 5349–5353.

    Article  Google Scholar 

  11. K. Limbadri, K. Toshniwal, K. Suresh, A.K. Gupta, V.V. Kutumbarao, M. Ram, M. Ravindran, G. Kalyankrishnan, and S.K. Signh, Stress Variation of Zincaloy-4 Johnson Cook Model for Rolled Sheets, Mater. Today Proc., 2018, 5(2–1), p 3793–3801.

    Article  CAS  Google Scholar 

  12. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth. Part I. Yield Criteria and Flow Rules for Porous Ductile Materials, J. Eng. Mater. Technol. Trans., 1977, 99(1), p 2–15.

    Article  Google Scholar 

  13. M. Trillant and J. Pastor, Limit Analysis and Gurson’s Model, Eur. J. Mech. A Solids, 2005, 24(5), p 800–819.

    Article  Google Scholar 

  14. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32(1), p 157–169.

    Article  Google Scholar 

  15. L. Ying and D. Wang, On the Numerical Implementation of a Shear Modified GTN Damage Model and Its Application to Small Punch Test, Int. J. Mater. Form., 2018, 11(4), p 527–539.

    Article  Google Scholar 

  16. K. Nahshon and J.W. Hutchinson, Modification of the Gurson Model for Shear Failure, Eur. J. Mech. A Solids, 2008, 27(1), p 1–17.

    Article  Google Scholar 

  17. Y. Bao and T. Wierzbicki, On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space, Int. J. Mech. Sci., 2004, 46(1), p 81–98.

    Article  Google Scholar 

  18. G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temp. Press. Eng. Fract. Mech., 1985, 21(1), p 31–48.

    Article  Google Scholar 

  19. J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Micro-voids in Triaxial Stress Fields, J. Mech. Phys. Solid., 1969, 17, p 201–217.

    Article  Google Scholar 

  20. J.W. Hancock and A.C. Mackenzie, On the Mechanisms of Ductile Failure in High Strength Steels Subjected to Multi-axial Stress-States, J. Mech. Phys. Solid., 1976, 24, p 147–160.

    Article  Google Scholar 

  21. J. Peng, Y. Wang, Q. Dai, X.D. Liu, L. Liu, and Z.H. Zhang, Effect of Stress Triaxiality on Plastic Damage Evolution and Failure Mode for 316L Notched Specimen, Metals, 2019, 9, p 1067.

    Article  CAS  Google Scholar 

  22. Z. Li, Y.J. Zhou, and S.X. Wang, Influence of Strain and Stress Triaxiality on the Fracture Behavior of GB 35CrMo Steel During Hot Tensile Testing, Ann. Mater. Sci. Eng., 2018, 2018, p 512–524.

    Google Scholar 

  23. M. Giglio, A. Manes, and F. Vigano, Ductile Fracture Locus of Ti-6Al-4V Titanium Alloy, Int. J. Mech. Sci., 2012, 54, p 121–135.

    Article  Google Scholar 

  24. R. Bobbili and V. Madhu, Effect of Strain Rate and Stress Triaxiality on Tensile Behavior of Titanium Alloy Ti-10-2-3 at Elevated Temperatures, Mater. Sci. Eng. A, 2016, 667, p 33–41.

    Article  CAS  Google Scholar 

  25. B. Kondori and A.A. Benzerga, Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31, Metall. Mater. Trans. A, 2014, 45, p 3292–3307.

    Article  CAS  Google Scholar 

  26. Y.C. Lin, X.-H. Zhu, W.-Y. Dong, H. Yang, Y.-W. Xiao, and N. Kotkunde, Effects of Deformation Parameters and Stress Triaxiality on the Fracture Behaviors and Microstructural Evolution of an Al-Zn-Mg-Cu Alloy, J. Alloys Compd., 2020, 832, 154988.

    Article  CAS  Google Scholar 

  27. D. Anderson, S. Winkler, A. Bardelcik, and M.J. Worswick, Influence of Stress Triaxiality and Strain Rate on the Failure Behavior of a Dual-Phase DP780 Steel, Mater. Des., 2014, 60, p 198–207.

    Article  CAS  Google Scholar 

  28. W. Bleck, Z. Deng, K. Papamantellos, and C.O. Gusek, A Comparative Study of the Forming-Limit Diagram Models for Sheet Steels, J. Mater. Process. Technol., 1998, 83(1–3), p 223–230.

    Article  Google Scholar 

  29. K.S. Ragavan, A Simple Technique to Generate In-plane Forming Limits Curves and Selected Applications, Metall. Mater. Trans. A., 1995, 26(8), p 2075–2084.

    Article  Google Scholar 

  30. D.J. Lewison, D. Lee, An Assessment of Different Experimental Methods for Determination of Forming Limits, Proceedings of the Fourth International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Numisheet’99, Besancon, France, September 13-17, 1999.

  31. M. Doig and K. Roll, Assessment of Damage Models in Sheet Metal Forming for Industrial Applications, Key Eng. Mater., 2011, 473, p 482–489.

    Article  Google Scholar 

  32. T. Ioannis, M. Marion, A New Way for the Adoption of Inverse Identified GTN-Parameters to Bending Processes, 13th International LS-DYNA Users Conference, Session:Constitutive Modeling, 1-14, 2014.

  33. Z. Zhang, A Sensitivity Analysis of Material Parameters for Gurson Constitutive Model, Fatigue Fract. Eng. Mater. Struct., 1996, 19(5), p 561–570.

    Article  CAS  Google Scholar 

  34. M. Doig and K. Roll, Towards Industrial Application of Damage Models for Sheet Metal Forming, In AIP Conference Proceedings, 2011, 1353(1), p 1541–1546.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahrettin Ozturk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamer, Y., Toros, S. & Ozturk, F. Numerical and Experimental Comparison of Fractural Characteristics of 316L Stainless Steel. J. of Materi Eng and Perform 32, 1103–1118 (2023). https://doi.org/10.1007/s11665-022-07152-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07152-1

Keywords

Navigation