Skip to main content
Log in

Synthesis of Nitrogen-Doped Diamond-Like Carbon Films Produced by Plasma-Enhanced Chemical Vapor Deposition and their Tribocorrosion Behavior in Hanks’ Solution

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Diamond-like carbon (DLC) films with various nitrogen content were deposited on TC4 titanium (Ti) alloys using a plasma-enhanced chemical vapor deposition (PECVD) technology. The microstructure and mechanical properties of undoped DLC and nitrogen-doped DLC (DLC-N) film were investigated systematically. In addition, the effects of the doped content of nitrogen on the electrochemical behavior and tribocorrosion properties of the DLC-N film in Hanks’ solution were evaluated in detail. The results showed that the doped nitrogen into the carbon network induced the formation of new sp2 sites, which was conducive to the graphitization in the doped DLC film. The doped content of nitrogen greatly affected the mechanical properties of the DLC-N film. The adhesion strength between the DLC-N film and Ti alloy substrate increased with the increase of the doped nitrogen in the film. Unexpectedly, the electrochemical properties of the DLC film became worse as the nitrogen was doped into the film, because of graphitization improving the electron migration speed in the DLC-N film. Interestingly, the tribocorrosion resistance of the doped DLC film was greatly improved as compared to the undoped DLC film. The higher adhesion strength of the DLC-N film resulted in fewer microcracks produced on the film during the tribocorrosion process in Hanks’ solution, which prevented the ionic solution from penetrating through the film and effectively protected the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z. Zhao, G. Wang, H. Hou, B. Han, Y. Zhang, and N. Zhang, Influence of High-Energy Pulse Current on the Mechanical Properties and Microstructures of Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2017, 26(10), p 5146–5153.

    Article  CAS  Google Scholar 

  2. G. Li, S.G. Qu, Y.X. Pan, X.Q. Li, and F.J. Sun, Influence of Oxidation Temperature and Exposure Time on Surface and Tribological Properties of Ti-6Al-4V Alloy After Surface Rolling, J. Mater. Eng. Perform., 2017, 26(7), p 3489–3499.

    Article  CAS  Google Scholar 

  3. Y. Zhao, S.M. Wong, H.M. Wong, S. Wu, T. Hu, K.W.K. Yeung, and P.K. Chu, Effects of Carbon and Nitrogen Plasma Immersion Ion Implantation on in vitro and in vivo Biocompatibility of Titanium Alloy, ACS Appl. Mater. Interfaces., 2013, 5(4), p 1510–1516.

    Article  CAS  Google Scholar 

  4. S. Tamilselvi, V. Raman, and N. Rajendran, Evaluation of Corrosion Behavior Of Surface Modified Ti–6Al–4V ELI Alloy in Hanks Solution, J. Appl. Electrochem., 2009, 40(2), p 285–293.

    Article  Google Scholar 

  5. Z.-Y. Zhou, X.-B. Liu, S.-G. Zhuang, X.-H. Yang, M. Wang, and C.-F. Sun, Preparation and High Temperature Tribological Properties of Laser in-situ Synthesized Self-Lubricating Composite Coatings Containing Metal Sulfides on Ti6Al4V Alloy, Appl. Surf. Sci., 2019, 481, p 209–218.

    Article  CAS  Google Scholar 

  6. G.D. Revankar, R. Shetty, S.S. Rao, and V.N. Gaitonde, Wear Resistance Enhancement of Titanium Alloy (Ti-6A1-4V) by Ball Burnishing Process, J. Mater. Res. Technol., 2017, 6(1), p 13–32.

    Article  CAS  Google Scholar 

  7. J. Komotori, N. Hisamori, and Y. Ohmori, The Corrosion/Wear Mechanisms of Ti-6Al-4V Alloy for Different Scratching Rates, Wear, 2007, 263, p 412–418.

    Article  CAS  Google Scholar 

  8. S. Saleem, R. Ahmad, R. Ayub, U. Ikhlaq, W. Jin, and P.K. Chu, Investigation of Nano-Structured Zirconium Oxide Film on Ti6Al4V Substrate to Improve Tribological Properties Prepared by PIII&D, Appl. Surf. Sci., 2017, 394, p 586–597.

    Article  CAS  Google Scholar 

  9. L. Cao, Y. Wan, S. Yang, and J. Pu, The Tribocorrosion and Corrosion Properties of Thermally Oxidized Ti6Al4V Alloy in 0.9 wt.% NaCl Physiological Saline, Coatings, 2018, 8(8), p 285.

    Article  Google Scholar 

  10. G. Zhou, H. Ding, Y. Zhang, A. Liu, Y. Lin, and Y. Zhu, Fretting Wear Study on Micro-Arc Oxidation TiO2 Coating on TC4 Titanium Alloys in Simulated Body Fluid, Tribol. Lett., 2010, 40(3), p 319–326.

    Article  CAS  Google Scholar 

  11. T.M. Manhabosco, S.M. Tamborim, C.B. dos Santos, and I.L. Mueller, Tribological, Electrochemical and Tribo-Electrochemical Characterization of Bare and Nitrided Ti6Al4V in Simulated Body Fluid Solution, Corros. Sci., 2011, 53(5), p 1786–1793.

    Article  CAS  Google Scholar 

  12. I.M. Pohrelyuk, V.M. Fedirko, O.V. Tkachuk, and R.V. Proskurnyak, Corrosion Resistance of Ti-6Al-4V Alloy with Nitride Coatings in Ringer’s Solution, Corros. Sci., 2013, 66, p 392–398.

    Article  CAS  Google Scholar 

  13. I. Caron, R. Gras, T. Ganne, and J.M. De Monicault, Coatings on Ti6Al4V as Palliatives for Fretting Fatigue in Cryogenic Environment, Tribol. Int., 2006, 39(10), p 1045–1051.

    Article  CAS  Google Scholar 

  14. F. Ma, J. Li, Z. Zeng, and Y. Gao, Structural, Mechanical and Tribocorrosion Behaviour in Artificial Seawater of CrN/AlN nano-Multilayer Coatings on F690 Steel Substrates, Appl. Surf. Sci., 2018, 428, p 404–414.

    Article  CAS  Google Scholar 

  15. D. Li, S. Guruvenket, and J.E. Klemberg-Sapieha, Corrosion and Tribo-Corrosion Enhancement of SS301 and Ti-6Al-4V Substrates by Amorphous Hydrogenated SiN/SiC/a-C Multilayer Coating Architecture, Surf. Coat. Technol., 2011, 206(7), p 1893–1898.

    Article  CAS  Google Scholar 

  16. L. Shan, Y. Wang, Y. Zhang, Q. Zhang, and Q. Xue, Tribocorrosion Behaviors of PVD CrN Coated Stainless Steel in Seawater, Wear, 2016, 362, p 97–104.

    Article  Google Scholar 

  17. J. Liu, X. Wang, B.J. Wu, T.F. Zhang, Y.X. Leng, and N. Huang, Tribocorrosion Behavior of DLC-Coated CoCrMo Alloy in Simulated Biological Environment, Vacuum, 2013, 92, p 39–43.

    Article  CAS  Google Scholar 

  18. T.F. Zhang, Q.Y. Deng, B. Liu, B.J. Wu, F.J. Jing, Y.X. Leng, and N. Huang, Wear and Corrosion Properties of Diamond-Like Carbon (DLC) Coating on Stainless Steel, CoCrMo and Ti6Al4V Substrates, Surf. Coat. Technol., 2015, 273, p 12–19.

    Article  CAS  Google Scholar 

  19. L. Fengji, Z. Sam, K. Junhua, Z. Yujuan, and Z. Wali, Multilayer DLC Coatings via Alternating Bias during Magnetron Sputteringo, Thin Solid Films, 2011, 519(15), p 4910–4916.

    Article  Google Scholar 

  20. A. Escudeiro, N.M. Figueiredo, T. Polcar, and A. Cavaleiro, Structural and Mechanical Properties of Nanocrystalline Zr co-Sputtered a-C(:H) Amorphous Films, Appl. Surf. Sci., 2015, 325, p 64–72.

    Article  CAS  Google Scholar 

  21. K.A.M. Aboua, N. Umehara, H. Kousaka, X. Deng, H.A. Tasdemir, Y. Mabuchi, T. Higuchi, and M. Kawaguchi, Effect of Carbon Diffusion on Friction and WEAR properties of Diamond-Like Carbon in Boundary Base Oil Lubrication, Tribol. Int., 2017, 113, p 389–398.

    Article  Google Scholar 

  22. W. Yang, Y. Gao, P. Guo, D. Xu, L. Hu, and A. Wang, Adhesion, Biological Corrosion Resistance and Biotribological Properties of Carbon Films Deposited on MAO Coated Ti Substrates, J. Mech. Behav. Biomed., 2020, 101, 103448.

    Article  CAS  Google Scholar 

  23. W.Q. Bai, L.L. Li, Y.J. Xie, D.G. Liu, X.L. Wang, G. Jin, and J.P. Tu, Corrosion and Tribocorrosion Performance of M (M Ta, Ti) Doped Amorphous Carbon Multilayers in Hank’s Solution, Surf. Coat. Technol., 2016, 305, p 11–22.

    Article  CAS  Google Scholar 

  24. A.Y. Wang, H.S. Ahn, K.R. Lee, and J.P. Ahn, Unusual stRess Behavior in W-Incorporated Hydrogenated Amorphous Carbon Films, Appl. Phys. Lett., 2005, 86(11), p 111902.

    Article  Google Scholar 

  25. M. Azzi, M. Paquette, J.A. Szpunar, J.E. Klemberg-Sapieha, and L. Martinu, Tribocorrosion Behaviour of DLC-coated 316L Stainless Steel, Wear, 2009, 267(5–8), p 860–866.

    Article  CAS  Google Scholar 

  26. F. Su, G. Chen, and J. Sun, Synthesis of Hydrogenated DLC Film by PECVD and its Tribocorrosion Behaviors under the Lubricating Condition of Graphene Oxide Dispersed in Water, Tribol. Int., 2019, 130, p 1–8.

    Article  CAS  Google Scholar 

  27. M. Cui, J. Pu, J. Liang, L. Wang, G. Zhang, and Q. Xue, Corrosion and Tribocorrosion Performance of Multilayer Diamond-Like Carbon Film in NaCl Solution, RSC Adv., 2015, 5(127), p 104829–104840.

    Article  CAS  Google Scholar 

  28. R. Bayon, A. Igartua, J.J. Gonzalez, and U. Ruiz de Gopegui, Influence of the Carbon Content on the Corrosion and Tribocorrosion Performance of Ti-DLC Coatings for Biomedical Alloys, Tribol. Int., 2015, 88, p 115–125.

    Article  CAS  Google Scholar 

  29. S.C. Ray, W.F. Pong, and P. Papakonstantinou, Iron, Nitrogen and Silicon Doped Diamond like Carbon (DLC) Thin Films: A Comparative study, Thin Solid Films, 2016, 610, p 42–47.

    Article  CAS  Google Scholar 

  30. L. Cao, J. Liu, Y. Wan, and J. Pu, Corrosion and Tribocorrosion Behavior of W Doped DLC Coating in Artificial Seawater, Diam. Relat. Mater., 2020, 109, 108019.

    Article  CAS  Google Scholar 

  31. S. Gayathri, N. Kumar, R. Krishnan, T.R. Ravindran, S. Dash, A.K. Tyagi, and M. Sridharan, Influence of Cr Content on the Micro-Structural and Tribological Properties of PLD Grown Nanocomposite DLC-Cr Thin Films, Mater. Chem. Phys., 2015, 167, p 194–200.

    Article  CAS  Google Scholar 

  32. H.G. Kim, S.H. Ahn, J.G. Kim, S.J. Park, and K.R. Lee, Corrosion Performance of Diamond-Like Carbon (DLC)-Coated Ti Alloy in the Simulated Body Fluid Environment, Diam. Relat. Mater., 2005, 14(1), p 35–41.

    Article  CAS  Google Scholar 

  33. T. Imai, T. Harigai, T. Tanimoto, R. Isono, Y. Iijima, Y. Suda, H. Takikawa, M. Kamiya, M. Taki, Y. Hasegawa, S. Kaneko, S. Kunitsugu, and M. Ito, Hydrogen-Free Fluorinated DLC Films with High Hardness Prepared by using T-Shape Filtered Arc Deposition System, Vacuum, 2019, 167, p 536–541.

    Article  CAS  Google Scholar 

  34. Y.-J. Jang, Y.-J. Kang, K. Kitazume, N. Umehara, and J. Kim, Mechanical and Electrical Properties of Micron-Thick Nitrogen-Doped Tetrahedral Amorphous Carbon Coatings, Diam. Relat. Mater., 2016, 69, p 121–126.

    Article  CAS  Google Scholar 

  35. S. Bhattacherjee, H. Niakan, Q. Yang, Y. Hu, and J. Dynes, Enhancement of Adhesion and Corrosion Resistance of Diamond-Like Carbon Thin Films on Ti-6Al-4V Alloy by Nitrogen Doping and Incorporation of Nanodiamond Particles, Surf. Coat. Technol., 2015, 284, p 153–158.

    Article  CAS  Google Scholar 

  36. C. Zeng, Q. Chen, M. Xu, S. Deng, Y. Luo, and T. Wu, Enhancement of Mechanical, Tribological and Morphological Properties of Nitrogenated Diamond-Like Carbon Films by Gradient Nitrogen Doping, Diam. Relat. Mater., 2017, 76, p 132–140.

    Article  CAS  Google Scholar 

  37. N.W. Khun, E. Liu, and X.T. Zeng, Corrosion Behavior of Nitrogen Doped Diamond-Like Carbon Thin Films in NaCl Solutions, Corros. Sci., 2009, 51(9), p 2158–2164.

    Article  CAS  Google Scholar 

  38. O. Sharifahmadian, F. Mahboubi, and S. Yazdani, Comparison Between Corrosion Behaviour of DLC and N-DLC Coatings Deposited by DC-Pulsed PACVD Technique, Diam. Relat. Mater., 2019, 95, p 60–70.

    Article  CAS  Google Scholar 

  39. S. Meskinis, A. Ciegis, A. Vasiliauskas, K. Slapikas, R. Gudaitis, I. Yaremchuk, V. Fitio, Y. Bobitski, and S. Tamulevicius, Annealing Effects on Structure and Optical Properties of Diamond-Like Carbon Films Containing Silver, Nanoscale Res. Lett., 2016, 11, p 146.

    Article  Google Scholar 

  40. S.E. Rodil, and S. Muhl, Bonding in Amorphous Carbon Nitride, Diam. Relat. Mater., 2004, 13(4–8), p 1521–1531.

    Article  CAS  Google Scholar 

  41. E. Liu, X. Shi, H.S. Tan, L.K. Cheah, Z. Sun, B.K. Tay, and J.R. Shi, The effect of Nitrogen on the Mechanical Properties of Tetrahedral Amorphous Carbon Films Deposited with a Filtered Cathodic Vacuum Arc, Surf. Coat. Technol., 1999, 120, p 601–606.

    Article  Google Scholar 

  42. M. Marton, D. Kovalcik, M. Vojs, E. Zdravecka, M. Varga, L. Michalikova, M. Vesely, R. Redhammer, and P. Pisecny, Electrochemical Corrosion Behavior of Amorphous Carbon Nitride Thin Films, Vacuum, 2012, 86(6), p 696–698.

    Article  CAS  Google Scholar 

  43. S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, Biaxial Alignment in Sputter Deposited Thin Films, Thin Solid Films, 2006, 515(4), p 1229–1249.

    Article  CAS  Google Scholar 

  44. A. Leyland and A. Matthews, On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour, Wear, 2000, 246(1–2), p 1–11.

    Article  CAS  Google Scholar 

  45. J.P. Sullivan, T.A. Friedmann, and A.G. Baca, Stress Relaxation and Thermal Evolution of Film Properties in Amorphous Carbon, J. Electron. Mater., 1997, 26(9), p 1021–1029.

    Article  CAS  Google Scholar 

  46. G. Leal, M.A. Fraga, L.A. Rasia, and M. Massi, Impact of High N-2 Flow Ratio on the Chemical and Morphological Characteristics of Sputtered N-DLC Films, Surf. Interface Anal., 2017, 49(2), p 99–106.

    Article  CAS  Google Scholar 

  47. C.L. Liu, D.P. Hu, J. Xu, D.Z. Yang, and M. Qi, In vitro Electrochemical Corrosion Behavior of Functionally Graded Diamond-Like Carbon Coatings on Biomedical Nitinol Alloy, Thin Solid Films, 2006, 496(2), p 457–462.

    Article  CAS  Google Scholar 

  48. L.X. Liu and E. Liu, Nitrogenated Diamond-Like Carbon Films for Metal Tracing, Surf. Coat. Technol., 2005, 198(1–3), p 189–193.

    Article  CAS  Google Scholar 

  49. N.W. Khun and E. Liu, Linear Sweep Anodic Stripping Voltammetry of Heavy Metals from Nitrogen Doped Tetrahedral Amorphous Carbon Thin Films, Electrochim. Acta, 2009, 54(10), p 2890–2898.

    Article  CAS  Google Scholar 

  50. Y. Fu, F. Zhou, Q. Wang, M. Zhang, and Z. Zhou, Electrochemical and tribocorrosion Performances of CrMoSiCN Coating on Ti-6Al-4V Titanium Alloy in Artificial Seawater, Corros. Sci., 2020, 165, 108385.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (52175168) and 173 project (2021-JJ-0175), Guangzhou Basic and Applied Basic Research Foundation (202102080422), and the University Scientific Research Platform Project of Guangdong Province (2020KCXTD043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Xu or Fenghua Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Tang, Y., Xu, X. et al. Synthesis of Nitrogen-Doped Diamond-Like Carbon Films Produced by Plasma-Enhanced Chemical Vapor Deposition and their Tribocorrosion Behavior in Hanks’ Solution. J. of Materi Eng and Perform 31, 8334–8345 (2022). https://doi.org/10.1007/s11665-022-06984-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06984-1

Keywords

Navigation