Skip to main content
Log in

Effect of ECAP and Subsequent Annealing on Microstructure, Texture, and Microhardness of an AA6060 Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AA6060 aluminum alloy was subjected to severe plastic deformation through equal-channel angular pressing (ECAP) up to 8 passes via route BC. ECAPed samples isochronally annealed for 1 hour at a temperature range of 150-450 °C. The microstructure and texture of the studied material were evaluated by electron backscatter diffraction, and the microhardness was characterized by Vickers microhardness testing. It was found that shearing texture is typically enhanced after ECAP processing. Grain size and grain growth kinetics were also studied. ECAP led to a substantial rise in hardness, with stability following 4 passes. Microstructures and material properties were relatively stable up to annealing temperatures of 150 °C. Some sub-micrometer grains were kept in the 8 passes sample to annealing temperatures of 300 °C. Annealing at elevated temperature resulted in a reduction in hardness leading to a rise in grain size and a decrease in dislocation density. After annealing temperature up to 450 °C, the texture index reveals a tendency to the texture weakening and randomization. The activation energy required for the grain growth of the AA6060 alloy was exceptionally low above 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.Z. Valiev, K. Islamgaliev and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci, 2000, 45, p 103–189. https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, N.A. Krasilnikov and N.K. Tsenev, Plastic Deformation of Alloys with Submicron-Grained Structure, Mater. Sci. Eng. A, 1991, 137, p 35–40. https://doi.org/10.1016/0921-5093(91)90316-F

    Article  Google Scholar 

  3. R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov, Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Mater. Sci. Eng. A, 1993, 168, p 141–148. https://doi.org/10.1016/0921-5093(93)90717-S

    Article  Google Scholar 

  4. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003

    Article  CAS  Google Scholar 

  5. V.M. Segal, V.I. Reznikov, A.E. Drobyshevski and V.I. Kopylov, Plastic Working of Metals by Simple Shear, Russ. Metall, 1981, 1, p 99–105.

    Google Scholar 

  6. T. Inoue and R. Ueji, Improvement of Strength, Toughness and Ductility in Ultrafine-Grained Low-Carbon Steel Processed by Warm bi-Axial Rolling, Mater. Sci. Eng. A, 2020, 786, 139415. https://doi.org/10.1016/j.msea.2020.139415

    Article  CAS  Google Scholar 

  7. M. Naseri, M. Reihanian and E. Borhani, Effect of Strain Path on Microstructure, Deformation Texture and Mechanical Properties of Nano/Ultrafine Grained AA1050 Processed by Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A., 2016, 673, p 288–298. https://doi.org/10.1016/j.msea.2016.07.031

    Article  CAS  Google Scholar 

  8. E.V. Bobruk, V.U. Kazykhanov, M.Y. Murashkin and R.Z. Valiev, Enhanced Strengthening in Ultrafine-Grained Al-Mg-Si Alloys Produced via ECAP with parallel Channels, Adv. Eng. Mater, 2015, 17, p 1733–1737. https://doi.org/10.1002/adem.201500119

    Article  CAS  Google Scholar 

  9. W. Yuan, Z. Liang, C. Zhang and L. Wei, Effects of La Addition on the Mechanical Properties and Thermal-Resistant Properties of Al-Mg-Si-Zr Alloys Based on AA 6201, Mater. Des, 2012, 34, p 788–792. https://doi.org/10.1016/j.matdes.2011.07.003

    Article  CAS  Google Scholar 

  10. X. Ji, H. Zhang, S. Luo, F. Jiang and D. Fu, Microstructures and properties of Al-Mg-SI Alloy Overhead Conductor by Horizontal Continuous Casting and Continuous Extrusion Forming Process, Mater. Sci. Eng. A, 2016, 649, p 128–134. https://doi.org/10.1016/j.msea.2015.09.114

    Article  CAS  Google Scholar 

  11. M.Y. Murashkin, I. Sabirov, V.U. Kazykhanov, E.V. Bobruk, A.A. Dubravina and R.Z. Valiev, Enhanced Mechanical Properties and Electrical Conductivity in Ultrafine-Grained Al Alloy Processed via ECAP-PC, J. Mater. Sci., 2013, 48, p 4501–4509. https://doi.org/10.1007/s10853-013-7279-8

    Article  CAS  Google Scholar 

  12. W.J. Kim, C.S. Chung, D.S. Ma, S.I. Hong and H.K. Kim, Optimization of Strength and Ductility of 2024 Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging, Scr. Mater., 2003, 49, p 333–338. https://doi.org/10.1016/S1359-6462(03)00260-4

    Article  CAS  Google Scholar 

  13. Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon, Equal Channel Angular Pressing of Commercial Aluminum Alloys: Grain Refinement, Thermal Stability and Tensile Properties, Metall. Mater. Trans. A, 2000, 31, p 691–701. https://doi.org/10.1007/s11661-000-0011-8

    Article  Google Scholar 

  14. T. Khelfa, M.A. Rekik, M. Khitouni and J.M. Cabrera-Marrero, Structure and Microstructure Evolution of Al-Mg-Si Alloy Processed by Equal-Channel Angular Pressing, Int. J. Adv. Manuf. Technol., 2017, 92, p 1731–1740. https://doi.org/10.1007/s00170-017-0282-5

    Article  Google Scholar 

  15. T. Khelfa, M.A. Rekik, J.A. Muñoz-Bolaños, J.M. Cabrera-Marrero and M. Khitouni, Microstructure and Strengthening Mechanisms in an Al-Mg-Si Alloy Processed by Equal Channel Angular Pressing (ECAP), Int. J. Adv. Manuf. Technol., 2018, 95, p 1165–1177. https://doi.org/10.1007/s00170-017-1310-1

    Article  Google Scholar 

  16. N. Liang, Y. Zhao, Y. Li, T. Topping, Y. Zhu, R.Z. Valiev and E.J. Lavernia, Influence of Microstructure on Thermal Stability of Ultrafine-Grained Cu Processed by Equal Channel Angular Pressing, J. Mater. Sci., 2018, 53, p 13173–13185. https://doi.org/10.1007/s10853-018-2548-1

    Article  CAS  Google Scholar 

  17. N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao and P. Venugopal, Effect of Cryo-Rolling and Annealing on Microstructure and Properties of Commercially Pure Aluminium, Mater. Sci. Eng. A, 2005, 398, p 246–251. https://doi.org/10.1016/j.msea.2005.03.026

    Article  CAS  Google Scholar 

  18. J.A. Muñoz, O.F. Higuera, A. Hernández-Expósito, A. Boulaajaj, R.E. Bolmaro, F.D. Dumitru, P. Rodriguez-Calvillo, A. Moreira Jorge and J.M. Cabrera, Thermal Stability of ARMCO Iron Processed by ECAP, Int. J. Adv. Manuf. Technol., 2018, 98, p 2917–2932. https://doi.org/10.1007/s00170-018-2353-7

    Article  Google Scholar 

  19. A. Hanna, H. Azzeddine, Y. Huang, D. Bradai, J.M. Cabrera and T.G. Langdon, An Investigation of the Thermal Stability of a Mg-Dy Alloy After Processing by High-Pressure Torsion, Mater. Charact., 2019, 151, p 519–529. https://doi.org/10.1016/j.matchar.2019.03.040

    Article  CAS  Google Scholar 

  20. N. Lugo, N. Llorca, J.J. Suñol and J.M. Cabrera, Thermal Stability of Ultrafine Grains Size of Pure Copper Obtained by Equal-Channel Angular Pressing, J. Mater. Sci., 2010, 9, p 2264–2273. https://doi.org/10.1007/s10853-009-4139-7

    Article  CAS  Google Scholar 

  21. J. Mao, S.B. Kang and J.O. Park, Grain Refinement, Thermal Stability and Tensile Properties of 2024 Aluminum Alloy after Equal-Channel Angular Pressing, J. Mat. Proc. Tech., 2005, 159, p 314–320. https://doi.org/10.1016/j.jmatprotec.2004.05.020

    Article  CAS  Google Scholar 

  22. I. Nikulin and R. Kaibyshev, The Effect of Temperature on Microstructure Evolution in a 7055 Aluminum Alloy Subjected to ECAP, Mater. Sci. Forum, 2012, 715–716, p 317–322.

    Article  Google Scholar 

  23. A. Dhal, S.K. Panigrahi and M.S. Shunmugam, Precipitation Phenomena, Thermal Stability and Grain Growth Kinetics in an Ultra-Fine Grained Al 2014 Alloy After Annealing Treatment, J. Alloy. Compd., 2015, 649, p 229–238. https://doi.org/10.1016/j.jallcom.2015.07.098

    Article  CAS  Google Scholar 

  24. P.B. Prangnell, J.S. Hayes, J.R. Bowen, P.J. Apps and P.S. Bate, Continuous Recrystallisation of Lamellar Deformation Structures Produced by Severe Deformation, Acta. Mater., 2004, 52, p 3193–3206. https://doi.org/10.1016/j.actamat.2004.03.019

    Article  CAS  Google Scholar 

  25. B.Q. Han, T.G. Langdon, Significance of microstructural thermal stability in an Al-2219 alloy processed by severe plastic deformation, Ultrafine Grained Materials II (Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe, eds.), (The Minerals, Metals and Materials Society, Warrendale, PA, 2002), p 485-494. https://doi.org/10.1002/9781118804537.ch55

  26. F. Czerwinski, Thermal Stability of Aluminum Alloys. Mater, 2020, 13, p 3441. https://doi.org/10.3390/ma13153441

    Article  CAS  Google Scholar 

  27. Y. Iwahashi, J. Wang, M. Horita, M. Nemoto and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine-Grained Materials, Scr. Mater., 1996, 35, p 143–146. https://doi.org/10.1016/1359-6462(96)00107-8

    Article  CAS  Google Scholar 

  28. F. Bachmann, R. Hielscher and H. Schaeben, Texture Analysis with MTEX, Solid State Phenom, 2010, 160, p 6–68.

    Article  Google Scholar 

  29. F.J. Humphreys, G.S. Rohrer and A. Rollett, Chapter continuous recrystallization during and after large strain deformation, Recrystallization and related annealing phenomena. F.J. Humphreys, G.S. Rohrer, A. Rollett Ed., Elsevier, Oxford, 2017, p 509–526

    Chapter  Google Scholar 

  30. S. Ferrasse, V.M. Segal and F. Alford, Texture Evolution During Equal Channel Angular Extrusion (ECAE): Part II—An Effect of Post-Deformation Annealing, Mater. Sci. Eng. A, 2004, 372, p 235–244. https://doi.org/10.1016/j.msea.2003.12.043

    Article  CAS  Google Scholar 

  31. H. Jazaeri and F.J. Humphreys, The Transition from Discontinuous to Continuous Recrystallization in Some Aluminium Alloys: I—the Deformed State, Acta. Mater, 2004, 52, p 3239–3250. https://doi.org/10.1016/j.actamat.2004.03.031

    Article  CAS  Google Scholar 

  32. F.J. Humphreys, The Nucleation of Recrystallization at Second Phase Particles in Deformed Aluminium, Acta. Metall, 1977, 25, p 1323–1344. https://doi.org/10.1016/0001-6160(77)90109-2

    Article  CAS  Google Scholar 

  33. F.J. Humphreys and M. Hatherly, Chapter 1: introduction, Recrystallization and related annealing phenomena. F.J. Humphreys, M. Hatherly Ed., Elsevier, Oxford, 2004

    Google Scholar 

  34. H. Jazaeri and F.J. Humphreys, Quantifying Recrystallization by Electron Backscatter Diffraction, J. Micros., 2004, 213, p 241–246. https://doi.org/10.1111/j.0022-2720.2004.01296.x

    Article  CAS  Google Scholar 

  35. O. Wouters, W. Vellinga, V.R. Tijum and D.J.T.M. Hosson, Effects of Crystal Structure and Grain Orientation on the Roughness of Deformed Polycrystalline Metals, Acta. Mater., 2006, 54, p 2813–2821. https://doi.org/10.1016/j.actamat.2006.02.023

    Article  CAS  Google Scholar 

  36. J.H. Cho, A. Rollett and K. Oh, Determination of a Mean Orientation in Electron Backscatter Diffraction Measurements, Metall. Mater. Trans. A, 2005, 36, p 3427–3428. https://doi.org/10.1007/s11661-005-0016-4

    Article  Google Scholar 

  37. K. Abib, H. Azzeddine, K. Tirsatine, T. Baudin, A.L. Helbert, F. Brisset, B. Alili and D. Bradai, Thermal Stability of Cu-Cr-Zr Alloy Processed by Equal-Channel Angular Pressing, Mater. Charact., 2016, 118, p 527–534. https://doi.org/10.1016/j.matchar.2016.07.006

    Article  CAS  Google Scholar 

  38. F.J. Humphreys, A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures-I: The Basic Model, Acta. Mater, 1997, 45, p 4231–4240.

    Article  CAS  Google Scholar 

  39. J. Hirsch, Texture and Anisotropy in Industrial Applications of Aluminum Alloys, Arch. Metall. Mater, 2005, 50, p 21–34. https://doi.org/10.1016/S1359-6454(97)00173-0

    Article  CAS  Google Scholar 

  40. I.J. Beyerlein and L.S. Toth, Texture Evolution in Equal-Channel Angular Extrusion, Prog. Mater. Sci., 2009, 54, p 427–510. https://doi.org/10.1016/j.pmatsci.2009.01.001

    Article  CAS  Google Scholar 

  41. O.F. Higuera and J.M. Cabrera, Texture Analysis in Ultrafine Grained Coppers Processed by Equal Channel Angular Pressing, Mater. Res, 2013, 16, p 619–624. https://doi.org/10.1590/S1516-14392013005000032

    Article  CAS  Google Scholar 

  42. C. Reyes-Ruiz, I.A. Figueroa, C. Braham, J.M. Cabrera, I. Alfonso and G. Gonzalez, Texture and Lattice Distortion Study of an Al-6061-T6 Alloy Produced by ECAP, Mater. Trans., 2015, 56, p 1781–1786. https://doi.org/10.2320/matertrans.M2015200

    Article  CAS  Google Scholar 

  43. M.H. Shaeri, M. Shaeri, M.T. Salehi, S.H. Seyyedein and F. Djavanroodi, Microstructure and Texture Evolution of Al-7075 Alloy Processed by Equal Channel Angular Pressing, Trans. Nonferrous. Met. Soc. China, 2015, 25, p 1367–1375. https://doi.org/10.1016/S1003-6326(15)63735-9

    Article  CAS  Google Scholar 

  44. X. Molodova, G. Gottstein, M. Winning and R.J. Hellmig, Thermal Stability of ECAP Processed Pure Copper, Mater. Sci. Eng. A, 2007, 460–461, p 204–213. https://doi.org/10.1016/j.msea.2007.01.042

    Article  CAS  Google Scholar 

  45. S. Li, I.J. Beyerlein, D.J. Alexander and S.C. Vogel, Texture Evolution During Multi-Pass Equal Channel Angular Extrusion of Copper: Neutron Diffraction Characterization and Polycrystal Modeling, Acta. Mater., 2005, 53, p 2111–2125. https://doi.org/10.1016/j.actamat.2005.01.023

    Article  CAS  Google Scholar 

  46. S. Li, I.J. Beyerlein, D.J. Alexander and S.C. Vogel, Texture Evolution During Equal Channel Angular Extrusion: Effect of Initial Texture From Experiment and Simulation, Scr. Mater., 2005, 52, p 1099–1104. https://doi.org/10.1016/j.scriptamat.2005.02.008

    Article  CAS  Google Scholar 

  47. S. Suwas, R. Arruffat-Massion, L.S. Tóth, A. Eberhardt, J.J. Fundenberger and W. Skrotzki, Evolution of Crystallographic Texture During Equal Channel Angular Extrusion of Copper: The Role of Material Variables, Metall. Mat. Trans. A, 2006, 37, p 739–753. https://doi.org/10.1007/s11661-006-0046-6

    Article  Google Scholar 

  48. K. Abib, J.A. Munoz Balanos, B. Alili and D. Bradai, On the Microstructure and Texture of Cu-Cr-Zr Alloy After Severeplastic Deformation by ECAP, Mater. Charact., 2016, 112, p 252–258. https://doi.org/10.1016/j.matchar.2015.12.026

    Article  CAS  Google Scholar 

  49. H. Jazaeri and F.J. Humphreys, The Transition from Discontinuous to Continuous Recrystallization in Some Aluminium Alloys: II—Annealing Behavior, Acta. Mater, 2004, 52, p 3251–3262. https://doi.org/10.1016/j.actamat.2004.03.030

    Article  CAS  Google Scholar 

  50. K. Tirsatine, H. Azzeddine, T. Baudin, A.L. Helbert, F. Brisset and D. Bradai, On the Recrystallization and Texture of Fe-36%Ni Alloy After Accumulative Roll Bonding and Annealing at 600 °C, Mater. Eng, 2017, 24, p 56–66.

    CAS  Google Scholar 

  51. H.J. Bunge, Texture Analysis in Materials Science: Mathematical Methods, Butterworth Butterworth-Heinemann, Butterworth & Co, London, 1982.

    Google Scholar 

  52. F.J. Humphreys and M. Hatherly, Recrystallisation and Related Annealing Phenomena, Pergamon, Oxford, 1995, p 451

    Google Scholar 

  53. E.O. Hall, The Deformation and aGeing of Mild Steel: III Discussion of Results, Proc. R. Soc. B., 1951, 64, p 747–753. https://doi.org/10.1088/0370-1301/64/9/303/meta

    Article  Google Scholar 

  54. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron. Steel. Inst, 1953, 174, p 25–28.

    CAS  Google Scholar 

  55. Y. Estrin, L.S. Tóth, A. Molinari and Y. Bréchet, A Dislocation-Based Model for All Hardening Stages in Large Strain Deformation, Acta. Mater., 1998, 46, p 5509–5522. https://doi.org/10.1016/S1359-6454(98)00196-7

    Article  CAS  Google Scholar 

  56. Y.A. Betanda, A.L. Helbert, F. Brisset, M.H. Mathon, T. Waeckerlé and T. Baudin, Measurement of Stored Energy in Fe-48%Ni Alloys Strongly Cold-Rolled Using Three Approaches: Neutron Diffraction, Dillamore and KAM Approaches, Mater. Sci. Eng. A, 2014, 614, p 193–198. https://doi.org/10.1016/j.msea.2014.07.037

    Article  CAS  Google Scholar 

  57. Y. Takayama and J. Szpunar, Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending, Mater. Trans, 2004, 45, p 2316–2325. https://doi.org/10.2320/matertrans.45.2316

    Article  CAS  Google Scholar 

  58. Q. Liu, D. Juul Jensen and N. Hansen, Effect of Grain Orientation on Deformation Structure in Cold-Rolled Polycrystalline Aluminium, Acta Mater., 1998, 46, p 5819–5838. https://doi.org/10.1016/S1359-6454(98)00229-8

    Article  CAS  Google Scholar 

  59. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations In Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527, p 2738–2746. https://doi.org/10.1016/j.msea.2010.01.004

    Article  CAS  Google Scholar 

  60. J. Stráská, M. Janeček, J. Čížek, J. Stráský and B. Hadzima, Microstructure Stability of Ultra-Fine Grained Magnesium Alloy AZ31 Processed by Extrusion and Equal-Channel Angular Pressing (EX–ECAP), Mater. Charact., 2014, 94, p 69–79. https://doi.org/10.1016/j.matchar.2014.05.013

    Article  CAS  Google Scholar 

  61. A. Zi, I. Stulikova and B. Smola, Response of Aluminum Processed by Extrusion Preceded ECAP to Isochronal Annealing, Mater. Sci. Eng. A, 2010, 527, p 1469–1472. https://doi.org/10.1016/j.msea.2009.10.015

    Article  CAS  Google Scholar 

  62. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev and T.G. Langdon, An Investigation of Microstructural Stability in An Al-Mg Alloy with Submicrometer Grain Size, Acta. Mater, 1996, 44, p 2973–2982. https://doi.org/10.1016/1359-6454(95)00395-9

    Article  CAS  Google Scholar 

  63. S. Tighiouaret, R. Lachhab, A. Hanna, H. Azzeddine, Y. Huang, T. Baudin, A.L. Helbert, F. Brisset, D. Bradai and T.G. Langdon, Thermal Stability of an Mg–Nd Alloy Processed by High-Pressure Torsion, Adv. Eng. Mater, 2019, 21, p 1900801. https://doi.org/10.1002/adem.201900801

    Article  CAS  Google Scholar 

  64. K.T. Park, H.J. Kwon, W.J. Kim and Y.S. Kim, Microstructural Characteristics and Thermal Stability of Ultrafine Grained 6061 Al Alloy Fabricated by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2001, 316, p 145–152. https://doi.org/10.1016/S0921-5093(01)01261-8

    Article  Google Scholar 

  65. F.A. Mohamed and T.G. Langdon, Deformation Mechanism Maps Based on Grain Size, Metall. Trans., 1974, 5, p 2339–2345. https://doi.org/10.1007/BF02644014

    Article  CAS  Google Scholar 

  66. A. Dhal, S.K. Panigrahi and M.S. Shunmugam, Insight into the Microstructural Evolution During Cryo-Severe Plastic Deformation and Post-Deformation Annealing of Aluminum and its Alloys, J. Alloys. Compd., 2017, 726, p 1205–1219. https://doi.org/10.1016/j.jallcom.2017.08.062

    Article  CAS  Google Scholar 

  67. O.F. Higuera-Cobos and J.M. Cabrera, Mechanical, Microstructural and Electrical Evolution of Commercially Pure Copper Processed by Equal Channel Angular Extrusion, Mater. Sci. Eng. A, 2013, 571, p 103–114. https://doi.org/10.1016/j.msea.2013.01.076

    Article  CAS  Google Scholar 

  68. S.J. Rothman, N.L. Peterson, L.J. Nowicki and L.C. Robinson, Tracer Diffusion of Magnesium in Aluminum Single Crystals, Phys. Status. Solidi. B, 1974, 63, p K29–K33. https://doi.org/10.1002/pssb.2220630151

    Article  CAS  Google Scholar 

  69. Y. Huang and F.J. Humphreys, Subgrain Growth and Low Angle Boundary Mobility in Aluminium Crystals of Orientation {110} <001, Acta. Mater, 2000, 48, p 2017–2030. https://doi.org/10.1016/S1359-6454(99)00418-8

    Article  CAS  Google Scholar 

  70. L.E .Murr, Interfacial Phenomena in Metals and Alloys. (Addison-Wesley, Reading, 1975) p. 131. https://doi.org/10.1002/piuz.19770080108

  71. R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, J. Lian, A.A. Nazarov and B. Baudelet, Deformation Behaviour of Ultra-Fine-Grained Copper, Acta. Metall. Mater, 1994, 42, p 2467–2475. https://doi.org/10.1016/0956-7151(94)90326-3

    Article  CAS  Google Scholar 

  72. J. Lian, R.Z. Valiev and B. Baudelet, On the Enhanced Grain Growth in Ultrafine Grained Metals, Acta. Metall. Mater., 1995, 43, p 4165–4170. https://doi.org/10.1016/0956-7151(95)00087-C

    Article  CAS  Google Scholar 

  73. I. Roy, M. Chauhan, E.J. Lavernia and F.A. Mohamed, Thermal Stability in Bulk Cryomilled Ultrafine-Grained 5083 Al Alloy, Metall. Mater. Trans. A, 2006, 37, p 721–730. https://doi.org/10.1007/s11661-006-0044-8

    Article  Google Scholar 

  74. M. Abbasi-Baharanchi, F. Karimzadeh and M.H. Enayati, Thermal Stability Evaluation of Nanostructured Al6061 Alloy Produced by Cryorolling, Trans Nonferrous. Met. Soc. China, 2017, 27, p 754–762. https://doi.org/10.1016/S1003-6326(17)60086-4

    Article  CAS  Google Scholar 

  75. H. Gleiter, Observations Suggesting a Transformation in the Structure of High-Angle Grain Boundaries in Lead, Z. Metallkd, 1970, 61, p 282–287.

    CAS  Google Scholar 

  76. P. Gondi, R. Montanari, A. Sili, In: Abbruzzeze, Brozzo (Eds.), Grain growth in polycrystalline materials. (Trans. Tech. Publ, Switzerland1992), p. 591

  77. V. Pandey, K. Chattopadhyay, N.C. SanthiSrinivas and V. Singh, Thermal and Microstructural Stability of Nanostructured Surface of the Aluminium alloy 7075, Mater. Charact, 2019, 151, p 242–251. https://doi.org/10.1016/j.matchar.2019.03.016

    Article  CAS  Google Scholar 

  78. Y. Liu, B. Jin and J. Lu, Mechanical Properties and Thermal Stability of Nanocrystallized Pure Aluminum Produced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng. A, 2015, 636, p 446–451. https://doi.org/10.1016/j.msea.2015.03.068

    Article  CAS  Google Scholar 

  79. J. Humphreys, G.S. Rohrer and A. Rollett, Grain Growth Following Recrystallization, Recrystallization and related annealing phenomena. J. Humphreys, G.S. Rohrer, A. Rollett Ed., Elsevier, Oxford, 2017, p 375–429

    Chapter  Google Scholar 

  80. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka and I. Nishida, Masumoto KA Preparation and Thermoelectric Properties of Mg2Si1−x Gex (x=0.0~0.4) Solid Solution Semiconductors, Mater. Trans. JIM, 1992, 33, p 845–850. https://doi.org/10.2320/matertrans1989.33.845

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Tarek Khelfa and Zhiguo Chen gratefully acknowledge for the financial support from the National Natural Science Foundation of China (Grant No. 51011120052) and the double first-class discipline construction program of Hunan Province. This work also was supported by the PHC-Maghreb Program No 16MAG03. JMC thanks CONACYT (Mexico) for the economic partial funding of his sabbatical leave at UMSNH.

Funding

National Natural Science Foundation of China (Grant No. 51011120052) and the double first-class discipline construction program of Hunan Province, and PHC-Maghreb Program No. 16MAG03 provided financial assistance for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tarek Khelfa or Zhiguo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelfa, T., Lachhab, R., Azzeddine, H. et al. Effect of ECAP and Subsequent Annealing on Microstructure, Texture, and Microhardness of an AA6060 Aluminum Alloy. J. of Materi Eng and Perform 31, 2606–2623 (2022). https://doi.org/10.1007/s11665-021-06404-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06404-w

Keywords

Navigation