Skip to main content
Log in

Microstructure and Properties of Modified Layer on the 65Mn Steel Surface by Pulse Detonation-Plasma Technology

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The modified layers were prepared on the 65Mn steel surface by pulse detonation-plasma technology (PDT) treatment. The effects of PDT on the morphology, phase structure, microhardness, and crystallographic orientation of 65Mn steel were studied. The modified layer with uniform thickness, compact structure and high hardness can be formed on the surface of 65Mn steel after PDT treatment. It was found that the grains are refined in modified layer, the residual austenite is formed with different physical processes, and the element of electrode is implanted into the surface to cause microalloying effects. Moreover, the microhardness and the wear resistance of the modified layer improve with increasing of treatment pulse. The maximum microhardness of modified layer is up to 794.9HV, and the wear resistance can be improved to be 2.1 times that of the substrate, which might due to grain refinement, dislocation increase and impact hardening. The possible mechanisms of the changes of microstructure and properties in modified layer after PDT treatment were discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yu.G. Chabak, V.I. Fedun, T.V. Pastukhova et al., Modification of Steel Surface by Pulsed Plasma Heating [J], Probl. Atom. Sci. Technol., 2017, 110(4), p 97–102.

    Google Scholar 

  2. S. Romankov, A. Mamaeva, S.D. Kaloshkin et al., Pulsed Plasma Treatment of Ti-Al Coatings Produced by Mechanical Alloying Method [J], Mater. Lett., 2007, 61(30), p 5288–5291. https://doi.org/10.1016/j.matlet.2007.04.055

    Article  CAS  Google Scholar 

  3. A.N. Bandura, O.V. Byrka, V.V. Chebotarev et al., Alloying and Modification of Structural Materials under Pulsed Plasma Treatment [J], Int. J. Plasma Environ. Sci. Technol., 2011, 5(1), p 2–6.

    Google Scholar 

  4. Yu.G. Chabak, V.I. Fedun, T.V. Pastukhova et al., Phase-structural Composition of Coating Obtained by Pulsed Plasma Treatment Using Eroded Cathode of T1 High Speed Steel[J], Probl. Atom. Sci. Technol., 2016, 102(4), p 102–106.

    Google Scholar 

  5. K.A. Yushchenko, Y.S. Borisov, Y.N. Tyurin et al., Theory and Practice of Plasma Detonation Modification of the Surface of Machine and Tool Components[J], Weld. Int., 1995, 9(1), p 56–58. https://doi.org/10.1080/09507119509548754

    Article  Google Scholar 

  6. A.D. Pogrebnjak and Y.N. Tyurin, Modification of Material Properties and Coating Deposition Using Plasma Jets [J], Phys. Usp., 2005, 48(5), p 487–514. https://doi.org/10.1070/PU2005v048n05ABEH002055

    Article  CAS  Google Scholar 

  7. Y.N. Tyurin, S.N. Kul, O.V. Kolisnichenko et al., Improving the Wear Resistance of Hard-alloy Rolling Disks by Pulsed-plasma Treatment [J], Steel in, Translation, 2009, 39(10), p 948–951. https://doi.org/10.3103/S0967091209100283

    Article  Google Scholar 

  8. S.N. Bratushka, Y. Tyurin, O.V. Kolisnichenko et al., Structure and Tribological Characteristics of Steel Under Melting by Plasma Flow and Simultaneous Mo and W Alloying [J], J. Frict. Wear, 2012, 33(1), p 22–33. https://doi.org/10.3103/S1068366612010047

    Article  Google Scholar 

  9. H.Y. Wang, Y.F. Zhao, X.J. Xu et al., Effects of Heat Treatment on Microstructure and Properties of Boriding Layer on 65Mn Steel [J], Trans. Mater. Heat Treat., 2012, 33(12), p 142–146. https://doi.org/10.13289/j.issn.1009-6264.2012.12.027

    Article  Google Scholar 

  10. A. Li, Hu. Mengjuan et al., Microstructure and Properties of 65Mn Steel After Austenite Inverse Phase Transformation by Sub-temperature Quenching [J], Adv. Mater. Res., 2011, 194–196, p 89–94.

    Google Scholar 

  11. X.M. Yuan, H.Y. Wang, Y.F. Zhao et al., Process Design of Strengthening and Toughening Treatment for 65Mn Steel by Powder RE-Boronizing Method under Low Temperature [J], Adv. Mater. Res., 2014, 941–944, p 1414–1419.

    Article  Google Scholar 

  12. C. Dong, J. Zhang, J. Xu et al., Microstructures and Properties of Electrical Discharge Strengthened Layers on 65Mn Steel [J], Appl. Surf. Sci., 2011, 257(7), p 2843–2849. https://doi.org/10.1016/j.apsusc.2010.10.078

    Article  CAS  Google Scholar 

  13. H.L. Wang, Y.J. Shen, Q.D. Li et al., Effect of Laser Hardening Process Parameters on Hardened Layer Depth of 65Mn Steel [J], Trans. Mater. Heat Treat., 2015, 36(9), p 213–218. https://doi.org/10.13289/j.issn.1009-6264.2015.09.037

    Article  CAS  Google Scholar 

  14. J.M. Luo, Y.H. Chen, J.L. Xu et al., Effect of Plasma-pulses Detonation Treatment on Microstructure and Properties of the Ti-6Al-4V Surface [J], Surf. Coat. Technol., 2019, 366, p 164–169. https://doi.org/10.1016/j.surfcoat.2019.03.033

    Article  CAS  Google Scholar 

  15. L.I. Markashova, Y.N. Tyurin, O.V. Kolisnichenko et al., Influence of Structure Parameters of Mechanical Properties of R6M5 Steel Under the Conditions of Strengthening Surface Treatment [J], Paton Weld. J., 2013, 12, p 16–21.

    Google Scholar 

  16. M.A. Li, Influence of Pretreatment Process on Microstructure and Properties of 65Mn Steel after Subcritical Quenching [J], Appl. Mech. Mater., 2013, 310, p 55–58.

    Article  Google Scholar 

  17. Z.H. Zheng, W.L. Zhang, D.X. Zhu et al., Inverse Heat Conduction Ananlysis of Surface Heat Transfer Coefficients for Typical Steels During Quenching with Phase Transformation [J], Trans. Mater. Heat Treat., 2010, 31(5), p 143–146. https://doi.org/10.1016/S1876-3804(11)60008-6

    Article  CAS  Google Scholar 

  18. F. Landry and P. Schaaf, Laser Nitriding of Iron: Influence of the Spatial Laser Intensity Distribution [J], Appl. Surf. Sci., 1999, 138, p 266–270.

    Article  Google Scholar 

  19. Y. Ivanov, W. Matz, V. Rotshtein et al., Pulsed Electron-beam Melting of High-speed Steel: Structural Phase Transformations and Wear Resistance [J], Surf. Coat. Technol., 2002, 150(2–3), p 188–198. https://doi.org/10.1016/S0257-8972(01)01542-0

    Article  CAS  Google Scholar 

  20. G. Stahli and C.H. Sturzenegger, On the Formation of Austentic Boundary Layers by Short Laser-pulse Reaction with Steel[J], Scr. Metall., 1978, 12(7), p 617–622. https://doi.org/10.1016/0036-9748(78)90273-9

    Article  Google Scholar 

  21. C.A. Apple and G. Krauss, The Effect of Heating Rate on the Martensite to Austenite Transformation in Fe-Ni-C Alloys [J], Acta Metall., 1972, 20(7), p 849–856. https://doi.org/10.1016/0001-6160(72)90077-6

    Article  CAS  Google Scholar 

  22. Y.B. Xu, Y. Zou et al., Correlation Between Deformation Behavior and Austenite Characteristics in a Mn-Al Type TRIP Steel [J], Mater. Sci. Eng., A, 2017, 698, p 126–135. https://doi.org/10.1016/j.msea.2017.05.058

    Article  CAS  Google Scholar 

  23. W.J. Kaluba, R. Taillard and J. Foct, The Bainitic Mechanism of Austenite Formation During Rapid Heating [J], Acta Mateialia, 1998, 46(16), p 5917–5927. https://doi.org/10.1016/S1359-6454(98)00210-9

    Article  CAS  Google Scholar 

  24. A.N. Valyaev, V.S. Ladysev, D.R. Mendygaliev et al., Defects in α-Fe Induces by Intense- Pulsed Ion Beam (IPIB) [J], Nucl. Instrum. Methods Phys. Res. B, 2000, 171(4), p 481–486. https://doi.org/10.1016/S0168-583X(00)00294-9

    Article  CAS  Google Scholar 

  25. G.E. Remnev, I.F. Isakov, M.S. Opekounov et al., High Intensity Pulsed Ion Beam Sources and Their Industrial Applications [J], Surf. Coat. Technol., 1999, 114(2/3), p 206–212. https://doi.org/10.1016/S0257-8972(99)00058-4

    Article  CAS  Google Scholar 

  26. X. Jin, B.Q. Fu, C.L. Zhang and W. Liu, Evolution of the Texture and Mechanical Properties of 2060 Alloy During Bending [J], Int. J. Miner. Metall. Mater., 2015, 22, p 966–971. https://doi.org/10.1007/s12613-015-1156-1

    Article  CAS  Google Scholar 

  27. A.T. Lim, D.J. Srolovitz, M. Haataja et al., Low-angle Grain Boundary Migration in the Presence of Eatrinsic Dislocations [J], Acta Mater., 2009, 57(17), p 5013–5022. https://doi.org/10.1016/j.actamat.2009.07.003

    Article  CAS  Google Scholar 

  28. Y.S. Borisov, O.V. Kolisnichenko et al., Effect of Plasma-detonation Treatment of Surface on Thermal State and Phase Composition of Modified Layers of Steel U8 [J], Sci. Tech., 2003, 4, p 22–25.

    Google Scholar 

  29. A. Ludwig, B. Pustal and D.M. Herlach, General Concept for a Stability Analysis of a Planar Interface Under Rapid Solidification Conditions in Multi-component Alloy Systems [J], Mater. Sci. Eng., A, 2001, 304–306, p 277–280. https://doi.org/10.1016/S0921-5093(00)01451-9

    Article  Google Scholar 

  30. S. Takaki, Reversion of Deformation Induced Materials to Austenite and Mechanism of Ultra Grain Refining [J], Tetsu- to- Hagane, 2010, 80(12), p 529–535. https://doi.org/10.1117/12.463751

    Article  Google Scholar 

  31. Xu. Cao Yupeng, F.A. Ying et al., Experimental study of residual stress formation mechanism of 7050 aluminum alloy sheet by laser shock processing [J], Chin. J. Lasers, 2016, 43(7), p 1–8. https://doi.org/10.3788/CJL201643.0702008

    Article  Google Scholar 

  32. A. Leyland and A. Matthews, On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating to Optimized Tribological Behavior [J], Wear, 2000, 246(1–2), p 1–11. https://doi.org/10.1016/S0043-1648(00)00488-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the International Science and Technology Cooperation Project (2013DFR50900), the National Natural Science Foundation of China (51701089, 51961015), Jiangxi Province Science and Technology Department (20194ABC28011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Zhou, H., Zhang, L. et al. Microstructure and Properties of Modified Layer on the 65Mn Steel Surface by Pulse Detonation-Plasma Technology. J. of Materi Eng and Perform 31, 1562–1572 (2022). https://doi.org/10.1007/s11665-021-06258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06258-2

Keywords

Navigation