Skip to main content
Log in

Mechanical Properties and Microstructure Transformation Behavior for Welded Joints in Ship Plate Steel with High-Heat Input Welding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mechanical properties and microstructure transformation for welded joints in EH40 ship plate steel were investigated after an electro-gas vertical welding and welding thermal simulation. Effect of the inclusions on the prior to austenite grain size and nucleation of intragranular ferrites (IGFs) was examined. Results indicated that the experimental steel has a good ability for high-heat input welding. Excellent impact toughness at testing temperature of − 20 °C was obtained. An increase in impact energies at − 20 °C for the position away from fusion line (FL) is observed. The average impact energy (177 J) for heat-affected zone by simulation with heat input of 120 kJ/cm is similar with that (165 J) for FL+1 mm by electro-gas vertical welding with heat input of 207 kJ/cm. The TiN particle lost the pinning effect when the peak temperature reached 1400 °C. However, the titanium oxide particles play an important role in inhibiting the austenite grain growth because of the high melting point. Three IAFs nucleated on the TiOx-Al2O3-MgO-MnS particle with the size of 7.6 μm were observed. The inclusion size is not the dominant requirement for the nucleation of IGFs and IAFs. The MnAl2O4 and TiO particle have good lattice matching with ferrite, they have a strong ability to promote the nucleation of IAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.H. Shi, X.G. Yuan, H.J. Huang, and S. Zhang, Effect of Zr Addition on the Microstructure and Toughness of Coarse-Grained Heat-Affected Zone with High-Heat Input Welding Thermal Cycle in Low-Carbon Steel, J. Mater. Eng. Perf., 2017, 26(7), p 1–9. https://doi.org/10.1007/s11665-017-2758-8

    Article  CAS  Google Scholar 

  2. W.Z. Mu, P.G. Jonsson, and K. Nakajima, Recent Aspects on the Effect of Inclusion Characteristics on the Intragranular Ferrite Formation in Low Alloy Steels: A Review, High Temp. Mater. Proc., 2017, 36(4), p 309–325. https://doi.org/10.1515/htmp-2016-0175

    Article  CAS  Google Scholar 

  3. J. Kobayashi, D. Ina, A. Futamura, and K. Sugimoto, Fracture Toughness of an Advanced Ultrahigh-strength TRIP-aided Steel, ISIJ Int., 2014, 54(4), p 955–962. https://doi.org/10.2355/isijinternational.54.955

    Article  CAS  Google Scholar 

  4. K. Seo, H. Ryoo, and H.J. Kim, Local Variation of Impact Toughness in Tandem Electro-Gas Welded Joint, Weld. World, 2020, 64(3), p 457–465. https://doi.org/10.1007/s40194-019-00844-8

    Article  CAS  Google Scholar 

  5. M.H. Lee, R. Kim, and J.H. Park, Effect of Nitrogen on Grain Growth and Formability of Ti-Stabilized Ferritic Stainless Steels, Sci. Rep., 2019, 9(1), p 1–11. https://doi.org/10.1038/s41598-019-42879-3

    Article  CAS  Google Scholar 

  6. Q.Y. Sha and Z.Q. Sun, Grain Growth Behavior of Coarse-Grained Austenite in a Nb-V-Ti Microalloyed Steel, Mater. Sci. Eng. A., 2009, 523, p 77–84. https://doi.org/10.1016/j.msea.2009.05.037

    Article  CAS  Google Scholar 

  7. S.F. Medina, M. Chapa, P. Valles, A. Quispe, and M.I. Vega, Influence of Ti and N Contents on Austenite Grain Control and Precipitate Size in Structural Steels, ISIJ Int., 1999, 39(9), p 930–936. https://doi.org/10.2355/isijinternational.39.930

    Article  CAS  Google Scholar 

  8. K. He and T.N. Baker, Effect of Zirconium Additions on Austenite Grain Coarsening of C-Mn and Microalloy Steels, Mater. Sci. Eng. A., 1998, 256, p 111–119. https://doi.org/10.1016/S0921-5093(98)00804-1

    Article  Google Scholar 

  9. Y. Liu, G.Q. Li, X.L. Wan, X.G. Zhang, Y. Shen and K.M. Wu, Toughness Improvement by Zr Addition in the Simulated Coarse-Grained Heat-Affected Zone of High-Strength Low-Alloy Steels, Ironmak. Steelmak., 2019, 46, p 113–123. https://doi.org/10.1080/03019233.2017.1353763

    Article  CAS  Google Scholar 

  10. X.B. Li, T.S. Zhang, Y. Min, C.J. Liu and M.F. Jiang, Effect of Magnesium Addition in Low-Carbon Steel Part 1: Behaviour of Austenite Grain Growth, Ironmak. Steelmak., 2019, 46, p 292–300. https://doi.org/10.1080/03019233.2017.1368953

    Article  CAS  Google Scholar 

  11. M.H. Shi, K. Rangasayee, J. Zhang, X.G. YuanzL.J. Li, Effect of Zr Microalloying on Austenite Grain Size of Low-Carbon Steels, Metall. Mater. Trans. B, 2019, 50(6), p 2574–2585. https://doi.org/10.1007/s11663-019-01701-1

    Article  CAS  Google Scholar 

  12. J.W. Lei, K.M. Wu, Y. Li, T.P. Hou, X. Xie, and R.D.K. Misra, Effects of Zr Addition on Microstructure and Toughness of Simulated CGHAZ in High-Strength Low-Alloy Steels, J. Iron Steel Res. Int., 2019, 26(10), p 1117–1125. https://doi.org/10.1007/s42243-019-00319-6

    Article  CAS  Google Scholar 

  13. M.H. Shi, P.Y. Zhang, C. Wang, and F.X. Zhu, Effect of High Heat Input on Toughness and Microstructure of Coarse Grain Heat Affected Zone in Zr Bearing Low Carbon Steel, ISIJ Int, 2014, 54(4), p 932–937. https://doi.org/10.2355/isijinternational.54.932

    Article  CAS  Google Scholar 

  14. G. An, J. Park, and I. Han, Effects of High Toughness and Welding Residual Stress for Unstable Fracture Prevention, Appl. Sci., 2020, 10(23), p 1–14. https://doi.org/10.3390/app10238613

    Article  CAS  Google Scholar 

  15. V. Richter-Trummer, P.M.G.P. Moreira, J. Ribeiro, and P.M.S.T. Castro, The Contour Method for Residual Stress Determination Applied to an Friction Stir Butt Weld, Mater. Sci. Forum, 2011, 681, p 177–181. https://doi.org/10.4028/www.scientific.net/MSF.681.177

    Article  CAS  Google Scholar 

  16. K. Seo, H. Ryoo, and H.J. Kim, Characterization of the local Brittle Layer Formed in Electro-Gas Weld Metals, Weld. World, 2021, 65, p 513–524. https://doi.org/10.1007/s40194-020-01032-9

    Article  Google Scholar 

  17. B.D. Meester, The weldability of modern structural TMCP steels, ISIJ Int, 1997, 37(6), p 537–551. https://doi.org/10.2355/isijinternational.37.537

    Article  Google Scholar 

  18. N. Rykalin, Calculation of Heat Processes in Welding, 1st ed. Mashgiz, Moscow, 1960, p 4–6

    Google Scholar 

  19. M.H. Shi, P.Y. Zhang, and F.X. Zhu, Toughness and Microstructure of Coarse Grain Heat Affected Zone with High Heat Input Welding in Zr-bearing Low Carbon Steel, ISIJ Int., 2014, 54(1), p 188–192. https://doi.org/10.2355/isijinternational.54.188

    Article  CAS  Google Scholar 

  20. Y. Tanimoto, H. Terasaki, and Y.I. Komizo, In-situ Observation of Microstructure Evolution in Heat-Affected-Zone of Ti-Killed Steel Weld, Q. J. Jpn. Weld. Soc, 2009, 27, p 122–125. https://doi.org/10.2207/qjjws.27.122s

    Article  Google Scholar 

  21. N. Fujiyama, T. Nishibata, H. Hirata, and A. Seki, Analysis of γ Grain Growth Behavior with TiN Dissolution, Prep. Nat. Meet. JWS, 2013, 21, p 176–177

    Google Scholar 

  22. M. Koda, K. Amano, Y. Funahashi, C. Shiga, and S. Ueda, Relation Between Solution Behavior of TiN Particles and Austenite Grain Size in Synthetic HAZ (Properties of Iron and Steel), Tetsu. Hagane., 1984, 70, p S1265

    Google Scholar 

  23. T. Koseki and G. Thewlis, Overview Inclusion Assisted Microstructure Control in C-Mn and Low Alloy Steel Welds, Mater. Sci. Tech., 2005, 21(8), p 867–879. https://doi.org/10.1179/174328405×51703

    Article  CAS  Google Scholar 

  24. R.A. Ricks, P.R. Howell, and G.S. Barritte, The Nature of Acicular Ferritein HSLA Steel Weld Metals, J. Mater. Sci., 1982, 17, p 732–740. https://doi.org/10.1007/BF00540369

    Article  CAS  Google Scholar 

  25. F.J. Barbaro, P. Krauklis, and K.E. Eastering, Formation of Acicular Ferrite at Oxide Particles in Steels, Mater. Sci. Tech., 1989, 5, p 1057–1068. https://doi.org/10.1179/026708389790340888

    Article  CAS  Google Scholar 

  26. S.G. Hong, K.J. Kang, and C.G. Park, Strain-Induced Precipitation of NbC in Nb and Nb-Ti Microalloyed HSLA Steels, Scr. Mater., 2002, 6, p 163–168. https://doi.org/10.1016/S1359-6462(01)01214-3

    Article  Google Scholar 

  27. Y.T. Pan and J.L. Lee, Development of TiOx-bearing steels with superior heat-affected zone toughness, Mater. Des., 1994, 15, p 331–338. https://doi.org/10.1016/0261-3069(94)90027-2

    Article  CAS  Google Scholar 

  28. J. Takamura, S. Mizoguchi, Roles of Oxides in Steel Performance, in proceedings of the 6th internal iron and steel congress. (Nagoya, ISIJ, 1999), pp. 591–597

  29. Hori. Effect of Chemical Composition on Strength and Toughness of Welds Made by Large Heat Input Submerged Arc Welding. PhD Thesis, Osaka University, 1995

  30. S. Tsushima, S. Ohkita, and Y. Hori, Effects of Oxygen on the Toughness of Ti-B Containing AC-MIG Weld Metal Development of AC-MIG Welding Process (Report 3), Q. J. Jpn. Weld. Soc., 1992, 10, p 264–271. https://doi.org/10.2207/qjjws.10.264

    Article  CAS  Google Scholar 

  31. J.M. Dowling, J.M. Corbett, and H.W. Kerr, Inclusion Phases and the Nucleation of Acicular Ferrite in Submerged arc Welds in HIGH Strength Low Alloy Steels, Metal. Mater. Trans. A., 1986, 17A, p 1611–1623. https://doi.org/10.1007/BF02650098

    Article  CAS  Google Scholar 

  32. Y. Tomonori, Study on inclusion composition and acicular ferrite formation behavior in weld metal of Ti-B low carbon alloy steel. PhD Thesis, Osaka University, 88–89, 2009

Download references

Acknowledgment

This work was supported by a grant from National Natural Science Foundation Project of China (Grant Number 51674004) and Key research and development projects of Anhui Science and Technology Department (Grant Number 202104a05020020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, J. & Li, B. Mechanical Properties and Microstructure Transformation Behavior for Welded Joints in Ship Plate Steel with High-Heat Input Welding. J. of Materi Eng and Perform 31, 944–952 (2022). https://doi.org/10.1007/s11665-021-06224-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06224-y

Keywords

Navigation