Skip to main content
Log in

Statistical Analysis of the Effect of the Cutting Tool Coating Type on Sustainable Machining Parameters

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Good surface roughness and topography are of great importance in plastic mold materials. This study investigated the effects of cutting parameters on cutting temperature, vibration (g), surface roughness (Ra), and noise (N) in the turning of AISI P20 die steel using coated tungsten carbide cutting tools. Experiments were carried out using the Taguchi L18 experimental design with cutting tools with two different types of coatings (CVD and PVD), three different cutting speeds (100, 150, and 200 m/min), three different feed rates (0.1, 0.15, and 0.2 mm/rev), and a constant cutting depth (1 mm). As a result of the study, the PVD-coated tools exhibited a higher performance for all outputs (cutting temperature, g, Ra, and N). It was observed that the vibration and surface roughness were proportional, vibration was mostly affected by feed rate, and increasing cutting speed and feed rate also increased the temperature and noise in the cutting zone. According to ANOVA results, the most effective parameter on surface roughness was feed rate (97.24%), the most effective parameter on vibration was cutting tool type (57.34%), and finally, the most effective parameter on noise was feed rate (50.37%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.C. Lee, C.Y. Nian and Y.S. Tarng, Design of A Dynamic Vibration Absorber Against Vibrations in Turning Operations, J. Mater. Process. Technol., 2001, 108(3), p 278–285. https://doi.org/10.1016/S0924-0136(00)00836-0

    Article  Google Scholar 

  2. H.E. Merritt, Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research-1, J. Eng. Industry, 1965, 87(4), p 447–454. https://doi.org/10.1115/1.3670861

    Article  Google Scholar 

  3. O.B. Abouelatta and J. Mádl, Surface Roughness Prediction Based on Cutting Parameters and Tool Vibrations in Turning Operations, J. Mater. Process. Technol., 2001, 118(1–3), p 269–277. https://doi.org/10.1016/S0924-0136(01)00959-1

    Article  Google Scholar 

  4. D.R. Salgado, F.J. Alonso, I. Cambero and A. Marcelo, In-Process Surface Roughness Prediction System using Cutting Vibrations in Turning, Int. J. Adv. Manuf. Technol., 2009, 43(1–2), p 40–51. https://doi.org/10.1007/s00170-008-1698-8

    Article  Google Scholar 

  5. A.H. Suhail, N. Ismail, S.V. Wong and N.A. Jalil, Workpiece Surface Temperature for In-Process Surface Roughness Prediction using Response Surface Methodology, J. Appl. Sci., 2011, 11(2), p 308–315. https://doi.org/10.3923/jas.2011.308.315

    Article  Google Scholar 

  6. P.V. Badiger, V. Desai, M.R. Ramesh, B.K. Prajwala and K. Raveendra, Cutting Forces, Surface Roughness and Tool Wear Quality Assessment using ANN and PSO Approach during Machining of MDN431 with TiN/AlN-Coated Cutting Tool, Arab. J. Sci. Eng., 2019, 44(9), p 7465–7477. https://doi.org/10.1007/s13369-019-03783-0

    Article  CAS  Google Scholar 

  7. J. Ganesh (nd). Ganesh Jai Steel Company. Data sheet. Available at https://www.jaiganeshsteel.com/products/p20-steel-1-2311-1- 2738/. Retrieved on 03.03.2021.

  8. I. Tlhabadira, I.A. Daniyan, R. Machaka, C. Machio, L. Masu and L.R. VanStaden, Modelling and Optimization of Surface Roughness during AISI P20 Milling Process using Taguchi Method, Int. J. Adv. Manuf. Technol., 2019, 102(9), p 3707–3718. https://doi.org/10.1007/s00170-019-03452-4

    Article  Google Scholar 

  9. L.L. De Lacalle, A. Lamikiz, M.A. Salgado, S. Herranz and A. Rivero, Process Planning for Reliable High-Speed Machining of Moulds, Int. J. Product. Res., 2002, 40(12), p 2789–2809. https://doi.org/10.1080/00207540210140068

    Article  Google Scholar 

  10. Y.H. Çelik, E. Kılıçkap and M. Güney, Investigation of Cutting Parameters Affecting on Tool Wear and Surface Roughness in Dry Turning of Ti-6Al-4V using CVD and PVD Coated Tools, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(6), p 2085–2093. https://doi.org/10.1007/s40430-016-0607-6

    Article  CAS  Google Scholar 

  11. F. Kara and B. Öztürk, Comparison and Optimization of PVD and CVD Method on Surface Roughness and Flank Wear in Hard-Machining of DIN 1.2738 Mold Steel, Sens. Rev., 2019, 39(1), p 24-33. https://doi.org/10.1108/SR-12-2017-0266.

  12. A. Thakur, S. Gangopadhyay, K.P. Maity and S.K. Sahoo, Evaluation on Effectiveness of CVD and PVD Coated Tools During Dry Machining of Incoloy 825, Tribol. Trans., 2016, 59(6), p 1048–1058. https://doi.org/10.1080/10402004.2015.1131350

    Article  CAS  Google Scholar 

  13. M. Nalbant, H. Gökkaya, İ Toktaş and G. Sur, The Experimental Investigation of the Effects of Uncoated, PVD-and CVD-coated Cemented Carbide Inserts and Cutting Parameters on Surface Roughness in CNC Turning and its Prediction Using Artificial Neural Networks, Robot. Comput. Integr. Manuf., 2009, 25(1), p 211–223. https://doi.org/10.1016/j.rcim.2007.11.004

    Article  Google Scholar 

  14. A. Ginting, R. Skein, D. Cuaca and Z. Masyithah, The Characteristics of CVD-and PVD-Coated Carbide Tools in Hard Turning of AISI 4340, Measurement, 2018, 129, p 548–557. https://doi.org/10.1016/j.measurement.2018.07.072

    Article  Google Scholar 

  15. N.A. Özbek, M.İ Karadag and O. Özbek, Optimization of Flank Wear and Surface Roughness during Turning of AISI 304 Stainless Steel using the Taguchi Method, Mater. Test., 2020, 62(9), p 957–961. https://doi.org/10.1515/mt-2020-620915

    Article  Google Scholar 

  16. P.V. Badiger, V. Desai, M.R. Ramesh, S. Joladarashi and H. Gourkar, Tribological Behaviour of Monolayer and Multilayer Ti-based Thin Solid Films Deposited on Alloy Steel, Mater. Res. Express., 2018, 6(2), 026419. https://doi.org/10.1088/2053-1591/aaef6d

    Article  CAS  Google Scholar 

  17. A. Hosseini and H.A. Kishawy, Cutting Tool Materials and Tool Wear, Springer, Berlin, 2014.

    Book  Google Scholar 

  18. T.V.S. Reddy, T. Sornakumar, M.V. Reddy and R. Venkatram, Machinability of C45 Steel with Deep Cryogenic Treated Tungsten Carbide Cutting Tool Inserts, Int. J. Refract. Metal. Hard Mater., 2009, 27(1), p 181–185. https://doi.org/10.1016/j.ijrmhm.2008.04.007

    Article  CAS  Google Scholar 

  19. K.H.W. Seah, M. Yong and K.H. Rahman, Performance Evaluation of Cryogenically Treated Tungsten Carbide Cutting Tool Inserts, Proc. Ins. Mech. Eng. Part B: J. Eng. Manuf., 2003, 217(1), p 29-43. https://doi.org/10.1243/095440503762502260.

  20. J.P. Davim and C. Maranhão, A Study of Plastic Strain and Plastic Strain Rate in Machining of Steel AISI 1045 using FEM Analysis, Mater. Des., 2009, 30(1), p 160–165. https://doi.org/10.1016/j.matdes.2008.04.029

    Article  CAS  Google Scholar 

  21. N. Abukhshim, P. Mativenga and M. Sheikh, Heat Generation and Temperature Prediction in Metal Cutting: A Review and Implications for High Speed Machining, Int. J. Mach. Tool. Manuf., 2006, 46(7–8), p 782–800. https://doi.org/10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

  22. Z.Q. Liu, X. Ai, H. Zhang, Z.T. Wang and Y. Wan, Wear Patterns and Mechanisms of Cutting Tools in High-Speed Face Milling, J. Mater. Process. Technol., 2002, 129(1–3), p 222–226. https://doi.org/10.1016/S0924-0136(02)00605-2

    Article  CAS  Google Scholar 

  23. G.T. Smith, Cutting Tool Technology: Industrial Handbook, Springer, London, 2008.

    Google Scholar 

  24. N.A. Özbek, Effects of Cryogenic Treatment Types on the Performance of Coated Tungsten Tools in the Turning of AISI H11 Steel, J. Mater. Res. Technol., 2020, 9(4), p 9442–9456. https://doi.org/10.1016/j.jmrt.2020.03.038

    Article  CAS  Google Scholar 

  25. L.B. Abhang and M. Hameedullah, Chip-Tool Interface Temperature Prediction Model for Turning Process, Int. J. Eng. Sci. Technol., 2010, 2(4), p 382–393.

    Google Scholar 

  26. O. Özbek and H. Saruhan, The Effect of Vibration and Cutting Zone Temperature on Surface Roughness and Tool Wear in Eco-friendly MQL Turning of AISI D2, J. Mater. Res. Technol., 2020, 9(3), p 2762–2772. https://doi.org/10.1016/j.jmrt.2020.01.010

    Article  CAS  Google Scholar 

  27. H. Soni, S. Narendranath and M.R. Ramesh, Effect of Machining Process Parameters on Productivity Rate and Surface Roughness of Machined TiNiCo Alloy, Mater. Today: Proc., 2018, 5(9), p 19166–19171. https://doi.org/10.1016/j.matpr.2018.06.271

    Article  CAS  Google Scholar 

  28. K.V. Kumar and S.K. Choudhury, Investigation of Tool Wear and Cutting Force in Cryogenic Machining using Design of Experiments, J. Mater. Process. Technol., 2008, 203(1–3), p 95–101. https://doi.org/10.1016/j.jmatprotec.2007.10.036

    Article  CAS  Google Scholar 

  29. A.K. Ghani and I.A. Choudhury, Study of Tool Life, Surface Roughness and Vibration in Machining Nodular Cast Iron with Ceramic Tool, J. Mater. Process. Technol., 2002, 127(1), p 17–22. https://doi.org/10.1016/S0924-0136(02)00092-4

    Article  CAS  Google Scholar 

  30. B.S. Prasad, M.P. Babu Correlation Between Vibration Amplitude and Tool Wear in Turning: Numerical and Experimental Analysis. Eng. Sci. Technol. Int. J. (2017) 20(1), p 197-211.

  31. Z. Cassier, Y. Prato and P. Muñoz-Escalona, Built-up Edge Effect on Tool Wear When Turning Steels at Low Cutting Speed, J. Mater. Eng. Perf., 2004, 13(5), p 542–547. https://doi.org/10.1361/10599490420629

    Article  CAS  Google Scholar 

  32. S. Rodríguez-Barrero, J. Fernández-Larrinoa, I. Azkona, L.N. López de Lacalle and R. Polvorosa, Enhanced Performance of Nanostructured Coatings for Drilling by Droplet Elimination, Mater. Manuf. Proces., 2016, 31(5), p 593–602. https://doi.org/10.1080/10426914.2014.973582

    Article  CAS  Google Scholar 

  33. P.V. Badiger, V. Desai and M.R. Ramesh, Development and Characterization of Ti/TiC/TiN Coatings by Cathodic Arc Evaporation Technique, Trans. Indian Inst. Met., 2017, 70(9), p 2459–2464. https://doi.org/10.1007/s12666-017-1107-9

    Article  CAS  Google Scholar 

  34. M.C. Çakır, Modern Metal Cutting, Nobel Academic Publication, Bursa, 1999.

    Google Scholar 

  35. L.N. López de Lacalle, A. Lamikiz, J. Fernández de Larrinoa and I. Azkona, Advanced cutting tools. In: J. P. Davim (Ed.), Machining of Hard Materials (pp. 33-86), London: Springer, 2011.

  36. T. Childs, K. Maekawa, T. Obikawa and Y. Yaman, Metal Machining: Theory and Applications, Butterworth-Heinemann, New York, 2000.

    Google Scholar 

  37. A. Duran, Y. Turgut and M. Günay, Experimental Measurement of Tool-Chip Interface Temperature with Pyrometer in Turning, J. Polytech., 2011, 14(4), p 297–301. https://doi.org/10.2339/2011.14.4

    Article  Google Scholar 

  38. F. Kara, K. Aslantaş and A. Çiçek, Prediction of Cutting Temperature in Orthogonal Machining of AISI 316L using Artificial Neural Network, Appl. Soft. Comput., 2016, 38, p 64–74. https://doi.org/10.1016/j.asoc.2015.09.034

    Article  Google Scholar 

  39. Z. Tekiner and S. Yeşilyurt, Investigation of the Cutting Parameters Depending on Process Sound During Turning of AISI 304 Austenitic Stainless Steel, Mater. Des., 2004, 25(6), p 507–513. https://doi.org/10.1016/j.matdes.2003.12.011

    Article  CAS  Google Scholar 

  40. O.N. Nwoke, U.C. Okonkwo, C.E. Okafor and I.P. Okokpujie, Evaluation of Chatter Vibration Frequency In Cnc Turning of 4340 Alloy Steel Material, Int. J. Scientific Eng. Res., 2017, 8(2), p 487–495.

    Google Scholar 

  41. I.P. Okokpujie, E.Y. Salawu, O.N. Nwoke, U.C. Okonkwo, I.O. Ohijeagbon and K.O. Okokpujie, Effects of Process Parameters on Vibration Frequency in Turning Operations of Perspex Material, July 4-6 2019 (London), Proceedings of the World Congress on Engineering, 2018.

  42. Y. Deshpande, A. Andhare and N.K. Sahu, Estimation of Surface Roughness using Cutting Parameters, Force, Sound, and Vibration in Turning of Inconel 718, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(12), p 5087–5096. https://doi.org/10.1007/s40430-017-0819-4

    Article  CAS  Google Scholar 

  43. N.R. Dhar, S. Paul and A.B. Chattopadhyay, Machining of AISI 4140 Steel Under Cryogenic Cooling-Tool Wear, Surface Roughness And Dimensional Deviation, J. Mater. Process. Technol., 2002, 123(3), p 483–489. https://doi.org/10.1016/S0924-0136(02)00134-6

    Article  CAS  Google Scholar 

  44. D. Mohan Lal, S. Renganarayanan and A. Kalanidhi, Cryogenic Treatment to Augment Wear Resistance of Tool and Die Steels, Cryog., 2001, 41(3), p 149-155. https://doi.org/10.1016/S0011-2275(01)00065-0.

  45. A. Şahinoğlu, Ş Karabulut and A. Güllü, Study on Spindle Vibration and Surface Finish in Turning of Al 7075, Solid State Phenom., 2017, 261, p 321–327.

    Article  Google Scholar 

  46. A.I. Fernández-Abia, J. Barreiro, L.N.L. Lacalle and S. Martinez, Effect of Very High Cutting Speeds on Shearing, Cutting Forces and Roughness in Dry Turning of Austenitic Stainless Steels, Int. J. Adv. Manuf. Technol., 2011, 57, p 61–71. https://doi.org/10.1007/s00170-011-3267-9

    Article  Google Scholar 

  47. A. Lamikiz, L.N. López de Lacalle, J.A. Sánchez and M.A. Salgado, Cutting Force Estimation in Sculptured Surface Milling, Int. J. Mach. Tool. Manuf., 2004, 44(14), p 1511–1526. https://doi.org/10.1016/j.ijmachtools.2004.05.004

    Article  Google Scholar 

  48. P.V. Badiger, V. Desai, M.R. Ramesh, B.K. Prajwala and K. Raveendra, Effect of Cutting Parameters on Tool Wear, Cutting Force and Surface Roughness in Machining of MDN431 Alloy using Al and Fe Coated Tools, Mater. Res. Exp., 2018, 6(1), 016401. https://doi.org/10.1088/2053-1591/aae2a3

    Article  CAS  Google Scholar 

  49. N.A. Özbek, Optimization of Flank Wear and Surface Quality in the Turning of 1.2343 Tool Steel using Carbide Tools Coated via Different Methods, Surf. Topogr.: Metrol. Prop., 2021. https://doi.org/10.1088/2051-672X/abfd06.

  50. P.V. Badiger, V. Desai, M.R. Ramesh and K. Raveendra, Optimization of Machining Parameters in Turning Process of Mdn431 Using Ti-Multilayer Coated Tool, Int. J. Mod. Manuf. Technol., 2018, 1, p 7–12.

    Google Scholar 

  51. R. Polvorosa, A. Suárez, L.N. López de Lacalle, I. Cerrillo, A. Wretland and F. Veiga, Tool Wear on Nickel Alloys with Different Coolant Pressures: Comparison of Alloy 718 and Waspaloy, J. Manuf. Process., 2017, 26, p 44–56. https://doi.org/10.1016/j.jmapro.2017.01.012

    Article  Google Scholar 

  52. J. Kopac and S. Sali, Tool Wear Monitoring During The Turning Process, J. Mater. Process. Technol., 2001, 113(1–3), p 312–316. https://doi.org/10.1016/S0924-0136(01)00621-5

    Article  Google Scholar 

  53. N. Seemuang, T. McLeay and T. Slatter, Using Spindle Noise to Monitor Tool Wear in a Turning Process, Int. J. Adv. Manuf. Technol., 2016, 86(9), p 2781–2790. https://doi.org/10.1007/s00170-015-8303-8

    Article  Google Scholar 

  54. O. Özbek, N. Altan Özbek, F. Kara and H. Saruhan, Effect of Vibration on Surface Roughness Values in Turning of Vanadis 10 Powder Metallurgical Cold Work Tool Steel, September 05-07 2019 (Duzce), 3rd International Engineering Research Symposium, INERS’19, 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuat Kara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbek, N.A., Özbek, O. & Kara, F. Statistical Analysis of the Effect of the Cutting Tool Coating Type on Sustainable Machining Parameters. J. of Materi Eng and Perform 30, 7783–7795 (2021). https://doi.org/10.1007/s11665-021-06066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06066-8

Keywords

Navigation