Skip to main content

Advertisement

Log in

In Vitro Study on Cytocompatibility of Mg Wire/Poly(Lactic Acid) Composite Rods

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to ensure the safety of materials used in the field of orthopedic internal fixation, cytocompatibility was evaluated by culturing MC3T3-E1 cells with the extracts of Mg-2Zn rods, poly(lactic acid) (PLA) rods, hot pressed and hot drawn Mg wire/PLA composite rods. The adhesion, spread, and growth states of cells on each group of sample were analyzed according to SEM images. The fluorescent micromorphology was analyzed, and the relative growth ratio was calculated to quantitatively evaluate the influence of these extracts on the cell viability. Results displayed that moderate and severe cytotoxicity appeared after cells incubated with extracts of Mg-2Zn rod for 3 and 5 days, but it returned to normal phenomenon after the extracts diluted by 10 times. Extracts of other three groups of sample displayed good cytocompatibility. The growth and proliferation of cells were closely related to the pH value and concentration of Mg2+. The osmolality changes of extracts had little influence on cytocompatibility of samples at the early stage. Therefore, we can predict the effect of degradation products of Mg wire/PLA composites on their cytocompatibility during the degradation process, on the basis of pH value, concentration of Mg2+, as well as osmolality changes. The good cytocompatibility of Mg wire/PLA composites provided experimental valid and valuable guideline for further material design and scheme selection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Hampp, N. Angrisani, J. Reifenrath, D. Bormann, J.M. Seitz and A. Meyer-Lindenberg, Evaluation of the Biocompatibility of Two Magnesium Alloys as Degradable Implant Materials in Comparison to Titanium as Non-Resorbable Material in the Rabbit, Mater. Sci. Eng. C, 2013, 33, p 317–326.

    Article  CAS  Google Scholar 

  2. A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, A.L. Jardini and R.M. Filho, Poly-Lactic Acid Synthesis for Application in Biomedical Devices—A Review, Biotechnol. Adv., 2012, 30, p 321–328.

    Article  CAS  Google Scholar 

  3. Y.X. Lai, Y. Li, H.J. Cao, J. Long, X.L. Wang, L. Li, C.R. Li, Q.Y. Jia, B. Teng, T.T. Tang, J. Peng, D. Eglin, M. Alini, D.W. Grijpma, G. Richards and L. Qin, Osteogenic Magnesium Incorporated into PLGA/TCP Porous Scaffold by 3D Printing for Repairing Challenging Bone Defect, Biomaterials, 2019, 197, p 207–219.

    Article  CAS  Google Scholar 

  4. X. Li, C.L. Chu, L. Liu, X.K. Liu, J. Bai, C. Guo, F. Xue, P.H. Lin and P.K. Chu, Biodegradable Poly-Lactic Acid Based-Composite Reinforced Unidirectionally with High-Strength Magnesium Alloy Wires, Biomaterials, 2015, 49, p 135–144.

    Article  CAS  Google Scholar 

  5. H. Cai, X. Li, C.L. Chu, F. Xue, C. Guo, Q.S. Dong and J. Bai, Insight into the Effect of Interface on the Mechanical Properties of Mg/PLA Composite Plates, Compos. Sci. Technol., 2019, 183, p 107801.

    Article  CAS  Google Scholar 

  6. P.F. Cheng, P. Han, C.L. Zhao, S.X. Zhang, H.L. Wu, J.H. Ni, P. Hou, Y.Z. Zhang, J.Y. Liu, H.D. Xu, S. Liu, X.N. Zhang, Y.F. Zheng and Y.M. Chai, High-Purity Magnesium Interference Screws Promote Fibrocartilaginous Entheses Regeneration in the Anterior Cruciate Ligament Reconstruction Rabbit Model via Accumulation of BMP-2 and VEGF, Biomaterials, 2016, 81, p 14–26.

    Article  CAS  Google Scholar 

  7. C. Janning, E. Willbold, C. Vogt, J. Nellesen, A. Meyer-Lindenberg, H. Windhagen, F. Thorey and F. Witte, Magnesium Hydroxide Temporarily Enhancing Osteoblast Activity and Decreasing the Osteoclast Number in Peri-Implant Bone Remodelling, Acta Biomater., 2010, 6, p 1861–1868.

    Article  CAS  Google Scholar 

  8. Z. Zhen, X.L. Liu, T. Huang, T.F. Xi and Y.F. Zheng, Hemolysis and Cytotoxicity Mechanisms of Biodegradable Magnesium and its Alloys, Mater. Sci. Eng. C, 2015, 46, p 202–206.

    Article  CAS  Google Scholar 

  9. D. Hong, P. Saha, D.T. Chou, B. Lee, B.E. Collins, Z.Q. Tan, Z.Y. Dong and P.N. Kumta, In Vitro Degradation and Cytotoxicity Response of Mg–4% Zn–0.5% Zr (ZK40) Alloy as a Potential Biodegradable Material, Acta Biomater., 2013, 9, p 8534–8547.

    Article  CAS  Google Scholar 

  10. A. Ferrández-Montero, M. Lieblich, J.L. González-Carrasco, R. Benavente, V. Lorenzo, R. Detsch, A.R. Boccaccini and B. Ferrari, Development of Biocompatible and Fully Bioabsorbable PLA/Mg Films for Tissue Regeneration Applications, Acta Biomater., 2019, 98, p 114–124.

    Article  Google Scholar 

  11. C.L. Chu, X. Han, J. Bai, F. Xue and P.K. Chu, Fabrication and Degradation Behavior of Micro-Arc Oxidized Biomedical Magnesium Alloy Wires, Surf. Coat. Technol., 2012, 213, p 307–312.

    Article  CAS  Google Scholar 

  12. H. Cai, J. Meng, X. Li, F. Xue, C.L. Chu, C. Guo and J. Bai, In Vitro Degradation Behavior of Mg Wire/Poly(lactic acid) Composite Rods Prepared by Hot Pressing and Hot Drawing, Acta Biomater., 2019, 98, p 125–141.

    Article  CAS  Google Scholar 

  13. X.Z. Song, L. Chang, J. Wang, S.J. Zhu, L.G. Wang, K. Feng, Y.G. Luo and S.K. Guan, Investigation on the In Vitro Cytocompatibility of Mg-Zn-Y-Nd-Zr Alloys as Degradable Orthopaedic Implant Materials, J. Mater. Sci. Mater. Med., 2018, 29, p 44–55.

    Article  Google Scholar 

  14. X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang and W.H. Wang, Corrosion of, and Cellular Responses to Mg–Zn–Ca Bulk Metallic Glasses, Biomaterials, 2010, 31, p 1093–1103.

    Article  CAS  Google Scholar 

  15. W.H. Jin, G.S. Wu, H.Q. Feng, W.H. Wang, X.M. Zhang and P.K. Chu, Improvement of Corrosion Resistance and Biocompatibility of Rare-Earth WE43 Magnesium Alloy by Neodymium Self-Ion Implantation, Corros. Sci., 2015, 94, p 142–155.

    Article  CAS  Google Scholar 

  16. J. Fischer, D. Pröfrock, N. Hort, R. Willumeit and F. Feyerabend, Reprint of: Improved Cytotoxicity Testing of Magnesium Materials, Mater. Sci. Eng. B, 2011, 176, p 1773–1777.

    Article  CAS  Google Scholar 

  17. R. Amberg, A. Elad, F. Beuer, C. Vogt, J. Bode and F. Witte, Effect of Physical Cues of Altered Extract Media from Biodegradable Magnesium Implants on Human Gingival Fibroblasts, Acta Biomater., 2019, 98, p 186–195.

    Article  CAS  Google Scholar 

  18. L.E. Monfoulet, P. Becquart, D. Marchat, K. Vandamme, M. Bourguignon, E. Pacard, V. Viateau, H. Petite and D. Logeart-Avramoglou, The pH in the Microenvironment of Human Mesenchymal Stem Cells is a Critical Factor for Optimal Osteogenesis in Tissue-Engineered Constructs, Tissue Eng. Part A, 2014, 20, p 1827–1840.

    Article  CAS  Google Scholar 

  19. A. Brandao-Burch, J.C. Utting, I.R. Orriss and T.R. Arnett, Acidosis Inhibits Bone Formation by Osteoblasts In Vitro by Preventing Mineralization, Calcif. Tissue Int., 2005, 77, p 167–174.

    Article  CAS  Google Scholar 

  20. Y.H. Shen, W.C. Liu, C.Y. Wen, H.B. Pan, T. Wang, B.W. Darvell, W.W. Lu and W.H. Huang, Bone Regeneration: Importance of Local pH—Strontium-Doped Borosilicate Scaffold, J. Mater. Chem., 2012, 22, p 8662–8670.

    Article  CAS  Google Scholar 

  21. X.N. Gu, N. Li, W.R. Zhou, Y.F. Zheng, X. Zhao, Q.Z. Cai and L.Q. Ruan, Corrosion Resistance and Surface Biocompatibility of a Microarc Oxidation Coating on a Mg–Ca Alloy, Acta Biomater., 2011, 7, p 1880–1889.

    Article  CAS  Google Scholar 

  22. Y.F. Zhang, J.K. Xu, Y.C. Ruan, M.K. Yu, M. O’Laughlin, H. Wise, D. Chen, L. Tian, D.F. Shi, J.L. Wang, S.H. Chen, J.Q. Feng, D.H.K. Chow, X.H. Xie, L.Z. Zheng, L. Huang, S. Huang, K. Leung, N. Lu, L. Zhao, H.F. Li, D.W. Zhao, X. Guo, K.M. Chan, F. Witte, H.C. Chan, Y.F. Zheng and L. Qin, Implant-Derived Magnesium Induces Local Neuronal Production of CGRP to Improve Bone-Fracture Healing in Rats, Nat. Med., 2016, 22(10), p 1160–1169.

    Article  Google Scholar 

  23. S.H. Lin, G.Z. Yang, F. Jiang, M.L. Zhou, S. Yin, Y.M. Tang, T.T. Tang, Z.Y. Zhang, W.J. Zhang and X.Q. Jiang, A Magnesium-Enriched 3D Culture System that Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration, Adv. Sci., 2019, 6, p 1900209.

    Article  Google Scholar 

  24. H.M. Wong, S.L. Wu, P.K. Chu, S.H. Cheng, K.D.K. Luk, K.M.C. Cheung and K.W.K. Yeung, Low-Modulus Mg/PCL Hybrid Bone Substitute for Osteoporotic Fracture Fixation, Biomaterials, 2013, 34, p 7016–7032.

    Article  CAS  Google Scholar 

  25. D.T. Chou, D. Hong, P. Saha, J. Ferrero, B. Lee, Z.Q. Tan, Z.Y. Dong and P.N. Kumta, In Vitro and In Vivo Corrosion, Cytocompatibility and Mechanical Properties of Biodegradable Mg–Y–Ca–Zr Alloys as Implant Materials, Acta Biomater., 2013, 9, p 8518–8533.

    Article  CAS  Google Scholar 

  26. N.S. Murni, M.S. Dambatta, S.K. Yeap, G.R.A. Froemming and H. Hermawan, Cytotoxicity Evaluation of Biodegradable Zn–3Mg Alloy Toward Normal Human Osteoblast Cells, Mater. Sci. Eng. C, 2015, 49, p 560–566.

    Article  CAS  Google Scholar 

  27. J. Payandeh, R. Pfoh and E.F. Pai, The Structure and Regulation of Magnesium Selective Ion Channels, Biochim. Biophys. Acta, 2013, 1828, p 2778–2792.

    Article  CAS  Google Scholar 

  28. C. Lorenz, J.G. Brunner, P. Kollmannsberger, L. Jaafar, B. Fabry and S. Virtanen, Effect of Surface Pre-Treatments on Biocompatibility of Magnesium, Acta Biomater., 2009, 5, p 2783–2789.

    Article  CAS  Google Scholar 

  29. J.L. Wang, F. Witte, T.F. Xi, Y.F. Zheng, K. Yang, Y.S. Yang, D.W. Zhao, J. Meng, Y.D. Li, W.R. Li, K.M. Chan and L. Qin, Recommendation for Modifying Current Cytotoxicity Testing Standards for Biodegradable Magnesium-Based Materials, Acta Biomater., 2015, 21, p 237–249.

    Article  Google Scholar 

  30. W.H. Reinhart, N.Z. Piety, J.S. Goede and S.S. Shevkoplyas, Effect of Osmolality on Erythrocyte Rheology and Perfusion of an Artificial Microvascular Network, Microvasc. Res., 2015, 98, p 102–107.

    Article  CAS  Google Scholar 

  31. J.B. Ford, N.C. Amiri-Davani, D.B. Diercks, T.E. Albertson, K.P. Owen and M.E. Sutter, Effect of Low-Osmolality Intravenous Contrast on Serum Osmolal Gap in Adults, J. Emerg. Med., 2013, 45, p 53–56.

    Article  Google Scholar 

  32. G. Narayanan, V.N. Vernekar, E.L. Kuyinu and C.T. Laurencin, Poly(Lactic Acid)-Based Biomaterials for Orthopaedic Regenerative Engineering, Adv. Drug Deliv. Rev., 2016, 107, p 247–276.

    Article  CAS  Google Scholar 

  33. I.S. Berglund, B.Y. Jacobs, K.D. Allen, S.E. Kim, A. Pozzi, J.B. Allen and M.V. Manuel, Peri-Implant Tissue Response and Biodegradation Performance of a Mg-1.0Ca-0.5Sr Alloy in Rattibia, Mater. Sci. Eng. C, 2016, 62, p 79–85.

    Article  CAS  Google Scholar 

  34. C. Rössig, N. Angrisani, P. Helmecke, S. Besdo, J.M. Seitz, B. Welke, N. Fedchenko, H. Kock and J. Reifenrath, In Vivo Evaluation of a Magnesium-Based Degradable Intramedullary Nailing System in a Sheep Model, Acta Biomater., 2015, 25, p 369–383.

    Article  Google Scholar 

  35. C.J. Shuai, C.X. He, G.W. Qian, A.J. Min, Y.W. Deng, W.J. Yang and X.F. Zang, Mechanically Driving Supersaturated Fe–Mg Solid Solution for Bone Implant: Preparation, Solubility and Degradation, Compos. Part B-Eng., 2017, 207, p 108564.

    Article  Google Scholar 

  36. Y.W. Yang, C.X. He, E. Dianyu, W.J. Yang, F.W. Qi, D.Q. Xie, L.D. Shen, S.P. Peng and C.J. Shuai, Mg Bone Implant: Features, Developments and Perspectives, Mater. Des., 2020, 185, p 108259.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by National Natural Science Foundation of China (No. 51771054, No. 51971062), Science and Technology Project of Jiangsu Province (No. BE2019679), Introduction of Talent Research Fund in Nanjing Institute of Technology (YKJ202008, YKJ201704), Natural Science Foundation of Jiangsu Province (BK20181020) and Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

HC was involved in methodology, investigation, data acquisition and analysis, writing original draft. XL contributed to funding support, writing review, and edit. FX was involved in funding support, supervision. CC contributed to funding support. CG was involved in validation. JB contributed to project administration. XZ was involved in edit.

Corresponding authors

Correspondence to Hong Cai or Xuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Li, X., Xue, F. et al. In Vitro Study on Cytocompatibility of Mg Wire/Poly(Lactic Acid) Composite Rods. J. of Materi Eng and Perform 30, 7214–7222 (2021). https://doi.org/10.1007/s11665-021-05883-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05883-1

Keywords

Navigation