Skip to main content

Advertisement

Log in

Structural Evolution and Mechanical and Magnetic Properties of Nonequiatomic CoFe2NiMn0.3Alx (0.25 ≤ x ≤ 1.00) High-Entropy Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

CoFe2NiMn0.3Alx (x = 0.25, 0.50, 0.75, 1.00) alloys were prepared using the arc melting method, and their crystal structure, microstructure, and mechanical properties were systematically studied. The results show that a greater Al content beneficially alters the crystal structure of the alloys from a single FCC phase to a mixture of FCC + BCC phases. With increasing Al content, the volume fraction of the BCC phase increases steadily, whereas the volume fraction of the FCC phase substantially decreases. With increasing Al content, the yield strength and hardness of the CoFe2NiMn0.3Alx alloys increases, whereas their ductility gradually decreases. Among the studied alloys, that with x = 0.75 exhibits both high strength and good ductility and its yield strength, fracture strength, and fracture strain are 1100 MPa, 2335 MPa, and 33.24%, respectively. Measurements of magnetic properties indicated that the saturation magnetization increases from 90 emu g−1 for the Al0.25 alloy to 148 emu g−1 for the Al1.00 alloy. The results show that the CoFe2NiMn0.3Alx high-entropy alloys are potential candidates to serve as magnetic materials in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Engin. Mater., 2004, 6(5), p 299–303

    Article  CAS  Google Scholar 

  2. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-entropy Dual-phase Alloys Overcome the Strength-ductility Trade-off, Nature, 2016, 534, p 227–230

    Article  CAS  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-entropy Alloys, Prog. Mater Sci., 2014, 61, p 1–93

    Article  Google Scholar 

  4. H. Jiang, D.X. Qiao, Y.P. Lu, Z. Ren, Z.Q. Cao, T.M. Wang, and T.J. Li, Direct Solidification of Bulk Ultrafine-Microstructure Eutectic High-Entropy Alloys with Outstanding Thermal Stability, Scripta Mater., 2019, 165, p 145–149

    Article  CAS  Google Scholar 

  5. Y.P. Lu, H.F. Huang, X.Z. Gao, C.R. Ren, J. Gao, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, and T.J. Li, A Promising New Class of Irradiation Tolerant Materials: Ti2ZrHfV0.5Mo0.2 High-entropy Alloy, J. Mater. Sci. Technol., 2019, 35(3), p 369–373

    Article  Google Scholar 

  6. F. He, D. Chen, B. Han, Q.F. Wu, Z.J. Wang, S.L. Wei, D.X. Wei, J.C. Wang, C.T. Liu, and J.J. Kai, Design of D022 Superlattice with Superior Strengthening Effect in High Entropy Alloys, Acta Mater., 2019, 167, p 275–286

    Article  CAS  Google Scholar 

  7. M.B. Kivy, M.A. Zaeem, and S. Lekakh, Investigating Phase Formations in Cast AlFeCoNiCu High Entropy Alloys by Combination of Computational Modeling and Experiments, Mater. Des., 2017, 127, p 224–232

    Article  Google Scholar 

  8. Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, and T.J. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater., 2017, 124, p 143–150

    Article  CAS  Google Scholar 

  9. O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of Aluminum on the Microstructure and properties of Two Refractory High-Entropy Alloys, Acta Mater., 2014, 68, p 214–228

    Article  CAS  Google Scholar 

  10. P.H. Wu, N. Liu, W. Yang, Z.X. Zhu, Y.P. Lu, and X.J. Wang, Microstructure and Solidification Behavior of Multicomponent CoCrCuxFeMoNi High-entropy Alloys, Mater. Sci. Eng., A, 2015, 642, p 142–149

    Article  CAS  Google Scholar 

  11. M. Zhu, K. Li, Y.Q. Liu, Z.J. Wang, L.J. Yao, Y. Fa, and Z.Y. Jian, Microstructure, Corrosion Behaviour and Microhardness of Non-equiatomic Fe1.5CoNiCrCux (0.5 ≤ x ≤ 2.0) High-entropy Alloys, Trans. Indian Ins. Metals, 2019, 73(2), p 389–397

  12. Z.J. Wang, Y.Y. Huang, Y. Yang, J.C. Wang, and C.T. Liu, Atomic-size Effect and Solid Solubility of Multicomponent Alloys, Scripta Mater., 2015, 94, p 28–31

    Article  CAS  Google Scholar 

  13. P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, and R.P. Liu, The High-entropy Alloys with High Hardness and Soft Magnetic Property Prepared by Mechanical Alloying and High-pressure Sintering, Intermetallics, 2016, 70, p 82–87

    Article  CAS  Google Scholar 

  14. C.Z. Yao, P. Zhang, M. Liu, G.R. Li, J.Q. Ye, P. Liu, and Y.X. Tong, Electrochemical Preparation and Magnetic Study of Bi-Fe-Co-Ni-Mn High Entropy Alloy, Electrochim. Acta, 2008, 53(28), p 8359–8365

    Article  CAS  Google Scholar 

  15. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep., 2013, 3, p 1455

    Article  Google Scholar 

  16. Q. Zhang, H. Xu, X.H. Tan, X.L. Hou, S.W. Wu, G.S. Tan, and L.Y. Yu, The Effects of Phase Constitution on Magnetic and Mechanical Properties of FeCoNi(CuAl)x (x = 0–1.2) High-entropy Alloys, J. Alloys Compd., 2017, 693, p 1061–1067

    Article  CAS  Google Scholar 

  17. P.P. Li, A.D. Wang, and C.T. Liu, Composition Dependence of Structure, Physical and Mechanical Properties of FeCoNi(MnAl)x High Entropy Alloys, Intermetallics, 2017, 87, p 21–26

    Article  CAS  Google Scholar 

  18. Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, and S.J. Lin, Electrical, Magnetic, and Hall Properties of AlxCoCrFeNi High-entropy Alloys, J. Alloys Compd., 2011, 509(5), p 1607–1614

    Article  CAS  Google Scholar 

  19. T.T. Zuo, M.C. Gao, L.Z. Ouyang, X. Yang, Y.Q. Cheng, R. Feng, S.Y. Chen, P.K. Liaw, J.A. Hawk, and Y. Zhang, Tailoring Magnetic Behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) High Entropy Alloys by Metal Doping, Acta Mater., 2017, 130, p 10–18

    Article  CAS  Google Scholar 

  20. C. Liu, W.Y. Peng, C.S. Jiang, H.M. Guo, J. Tao, X.H. Deng, and Z.X. Chen, Composition and Phase Structure Dependence of Mechanical and Magnetic Properties for AlCoCuFeNix High Entropy Alloys, J. Mater. Sci. Technol., 2019, 35(6), p 1175–1183

    Article  Google Scholar 

  21. Y.J. Zhou, Y. Zhang, F.J. Wang, and G.L. Chen, Phase Transformation Induced by Lattice Distortion in Multiprincipal Component CoCrFeNiCuxAl1−x Solid-solution Alloys, Appl. Phys. Lett., 2008, 92, p 241917

    Article  Google Scholar 

  22. B. Chanda and J. Das, Composition Dependence on the Evolution of Nanoeutectic in CoCrFeNiNbx (0.45 ≤ x ≤ 0.65) High Entropy Alloys, Adv. Eng. Mater., 2018, 20(4), p 1700908

    Article  Google Scholar 

  23. X. Yang and Y. Zhang, Prediction of High-entropy Stabilized Solid-solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238

    Article  CAS  Google Scholar 

  24. G. Qin, S. Wang, R.R. Chen, H.T. Zheng, L. Wang, Y.Q. Su, J.J. Guo, and H.Z. Fu, Improvement of Microstructure and Mechanical Properties of CoCrCuFeNi High-entropy Alloys by V Addition, J. Mater. Engin. Perform., 2019, 28, p 1049–1056

    Article  CAS  Google Scholar 

  25. G. Qin, Z.B. Li, R.R. Chen, H.T. Zheng, C.L. Fan, L. Wang, Y.Q. Su, H.S. Ding, J.J. Guo, and H.Z. Fu, CoCrFeMnNi High-entropy Alloys Reinforced with Laves Phase by Adding Nb and Ti Elements, J. Mater. Res., 2019, 34(6), p 1011–1020

    Article  CAS  Google Scholar 

  26. N.Y. Yurchenko, N.D. Stepanov, D.G. Shaysultanov, M.A. Tikhonovsky, G.A. Salishcheva, Effect of Al Content on Structure and Mechanical Properties of the AlxCrNbTiVZr (x = 0; 0.25; 0.5; 1) High-entropy Alloys, Mater. Charact., 2016, 121, p 125–134

  27. S. Guo, C.P. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of fcc or bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505

    Article  Google Scholar 

  28. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and Mechanical Properties of CoCrFeNiTiAlx High-entropy Alloys, Mater. Sci. Eng. A, 2009, 508(1–2), p 214–219

    Article  Google Scholar 

  29. C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, and S.Y. Chang, Mechanical Performance of the AlxCoCrCuFeNi High-entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A, 2005, 36, p 1263–1271

    Article  Google Scholar 

  30. J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, Cambridge, 2010, p 195–244

    Google Scholar 

Download references

Acknowledgment

This research work was funded by the National Natural Science Foundation of China (Nos. 51301125, 51971166, 51904218), the Natural Science Basic Research Program of Shaanxi Province (No. 2020JM-557), and the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yao, L., Zhu, M. et al. Structural Evolution and Mechanical and Magnetic Properties of Nonequiatomic CoFe2NiMn0.3Alx (0.25 ≤ x ≤ 1.00) High-Entropy Alloys. J. of Materi Eng and Perform 30, 1472–1478 (2021). https://doi.org/10.1007/s11665-020-05411-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05411-7

Keywords

Navigation