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When the atomic level is considered, the dynamic properties have a major influence on nanostructures
behavior because of their ultrahigh or very high natural frequencies. Vibrations are essential in the analysis
of resonators, oscillators, and sensors for carbon nanotube-based devices. The present paper is dedicated to
the eigenfrequencies analysis of single-walled carbon nanotubes. In the analysis, the small-scale coefficient is
introduced, and the nonlocal elasticity theory is applied in the modal analysis of the carbon nanotubes. The
correlation between nonlocal small-scale parameter and the vibrational behavior of the carbon nanotubes is
studied. The determination of nonlocal parameter is based on the structural finite element model of the
nanotube. A detailed parametric study is realized to investigate the effects of the length-to-diameter ratio L/
D, nonlocal coefficient, the influence of boundary conditions on eigenfrequencies of carbon nanotubes. The
main contribution of this work is the evaluation of the nonlocal parameter for single-walled carbon nan-
otubes based on the finite element approximation in modeling the dynamic behavior instead of commonly
used MD simulations. It was clearly displayed that the application of the nonlocal beam models involves
analysis of the small-scale parameter, whose value determines the final eigenfrequencies. The highest values
of eigenfrequencies were observed for the local beam model. It was presented that the eigenfrequencies for
carbon nanotubes decrease when the nanotube length increases for all analyzed modes. On the other hand,
when the diameter of carbon nanotubes increases, the eigenfrequency values rise. The numerical validation
of the nonlocal parameter revealed the high dependence on the boundary conditions and the mode number.
However, the influence of the mode number and the boundary conditions is vanishing for long single-walled
carbon nanotubes.
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1. Introduction

Firstly described by Iijima and Iijima and Ichihashi (Ref 1,
2) carbon nanotubes (CNTs) are presented as perfect systems
for exploring electromechanical effects because of a small
diameter, low mass, and defect-free structure on the molecular
level (Ref 3). Moreover, some experimental reports on CNTs
revealed high values of natural frequency (Ref 4, 5). The
outstanding properties of CNTs allow their use as high-
frequency nanoelectromechanical systems (NEMS) (Ref 3, 6-
8). For some NEMS, the oscillation frequency is a key property
(Ref 6). Also, the values of natural frequencies or shape modes
can be used as an indirect method of Young�s modulus
evaluation (Ref 7). Considering the carbon nanotube-based
nanoelectromechanical systems, their vibrations are essential in

the analysis, for instance, field emission devices, sensors,
resonators, oscillators, charge detectors, and also biosensors
(Ref 8). During carbon nanotube deformation, the nanotube
diameter and length are changed which causes the resonant
frequency modifications (Ref 9). Also, the shift of the resonant
frequency of a nanotube resonator is dependent on the force the
nanotube is subjected. Thus, the most crucial issue is first of all
to identify the resonant frequency of nanotube and next to
formulate the correlation between resonant frequency shift and
the applied force. In biosensor with carbon nanotubes, the
natural vibrations and mode shapes are an excellent measure to
describe the dynamic behavior of the cantilevered or bridged
carbon nanotubes under biochemical interactions (Ref 10-12).

In the theoretical studies on CNT vibrations, the following
models might be illustrated: (1) atomic, (2) continuum, and (3)
mix atomic/continuum models. From the engineering point of
view, the atomic models are not sufficient because of the scale
and time limitation and in fact, these models are applied only in
the case of short CNTs investigations—see Ansari et al. (Ref
13). When the carbon nanotube continuum modeling is
reviewed, beam and shell models might be found, for example,
Yoon et al. (Ref 14) and Wang et al. (Ref 15). Typically, the
flexural eigenfrequencies and mode shapes are obtained using
beam models, whereas shell models are applied for the radial,
axial, and circumferential eigenfrequencies and modes extrac-
tions (Ref 8). Also, atomic-structural approaches based on the
molecular dynamics and continuum mechanics are developed,
for example, Li and Chou (Ref 16). In contrast to the
continuum models, not only geometry of carbon nanotubes
but also interatomic interactions are taken into account in the
atomic-structural models. Characteristic is that the eigenfre-
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quencies of nanotubes are on the level of terahertz values and it
is strongly depended on the applied boundary conditions (BC)
(Ref 8). However, Ambrosini and Borbon (Ref 17) presented
beam model based on the theory for the thin-walled beam that
considers shear effects and is independent on the boundary
conditions.

Based on an equivalent continuum mechanics approach,
Lee et al. (Ref 18) evaluated the fundamental natural
frequency of single-walled carbon nanotubes (SWCNTs).
They reported the frequencies for armchair nanotubes varied
between 7 and 300 GHz, 40 and 1700 GHz, and 20 and
800 GHz for SWCNTs under clamped–free (C–F), clamped–
clamped (C–C), and simply supported (S-S) boundary condi-
tions, respectively. A molecular dynamics study was em-
ployed by Ansari et al. (Ref 13) to investigate the vibrations
of single- and double-walled carbon nanotubes (DWCNTs).
They observed that the natural frequency and its dependence
on boundary conditions are reduced by increasing the tube
length. It was revealed that the natural frequency of DWCNTs
lies between those of the constituent inner and outer SWCNTs
and it is close to those of the outer one. The presented values
varied from 31 to 247 GHz for long and short SWCNTs with
C–F boundary conditions. Whereas for C–C boundary con-
ditions, the natural frequencies were higher and varied from
118 to 1167 GHz for long and short SWCNTs. A structural
mechanics approach was applied by Sakhaee-Pour et al. (Ref
19) and Parvaneh et al. (Ref 20) to investigate the vibrational
stability of SWCNTs. Finite element method (FEM) studies
on the natural frequencies of single- and multi-walled carbon
nanotubes (MWCNTs) using Euler–Bernoulli beam elements
were performed, e.g., by Fan et al. (Ref 21), Rahmandoust
and Öchsner (Ref 22) and Ghavamian and Öchsner (Ref 23).
Fan et al. (Ref 21) presented the numerical examples for
approximating the mechanical properties of nanotubes includ-
ing Young�s moduli, shear modulus, natural frequency,
buckling loads for MWCNT. Rahmandoust and Öchsner
(Ref 22) studied buckling behavior and resonant frequency
modes of the armchair and zigzag models of SWCNT. Later,
in work (Ref 23), it was revealed that by increasing the
number of carbon nanotube walls, their natural frequencies
raise which means that the higher the number of walls is, the
more stable the structure becomes against vibration. It was
also showed that armchair CNTs have higher natural frequen-
cies than zigzag structures.

Concerning CNTs, it is observed that classical (local)
beam theories are insufficient for the mechanical properties
analysis of small beam-like structures in the absence of any
material length scale parameters, for example, Peddieson
et al. (Ref 24), Anderson et al. (Ref 25), Reddy (Ref 26),
Wang et al. (Ref 27), Heireche et al. (Ref 28) and Civalek
and Demir (Ref 29). Size effects often become prominent at
nanometer scales. The problem lies in the fact that classical
beam models cannot capture the small-scale effect in the
mechanical properties presenting scale-free relations. There-
fore, some non-classical continuum approaches have been
defined to determine the mechanical behavior of small-sized
structures, such as nonlocal elasticity theory (Ref 24, 26-35),
strain gradient theories (Ref 36-41), and couple stress theory
(Ref 42, 43).

Applications of nonlocal continuum mechanics for CNTs
have been studied by many researchers in the issue of static
(Ref 27, 28) and dynamic analyses (Ref 25, 30). Wang (Ref
44) pointed out that nonlocal elasticity theory should be used

for an accurate prediction of wave propagation in CNTs. Wang
and Varadan (Ref 45) analyzed vibration of both SWCNTs and
DWCNTs via nonlocal Euler–Bernoulli (E–B) and Timoshen-
ko (TB) beam models. Lu et al. (Ref 46) and Heireche et al.
(Ref 47) studied wave propagation in nanotubes used in
nonlocal elasticity beam models. Arash and Wang (Ref 48)
discussed the superiority of nonlocal continuum models to
their local counterparts, the necessity of the adjustment of the
small-scale parameter, and the applicability of nonlocal
continuum models. Barretta and Sciarra (Ref 49) presented
the nonlocal elastostatic problem of Euler–Bernoulli nano-
beams and pointed out the nonlocality effect. Hu et al. (Ref
50) used nonlocal shell model to study wave propagation in
CNTs and compared it with MD results. Fazelzadeh and
Ghavanloo (Ref 51) applied nonlocal anisotropic elastic shell
model for vibrations of SWCNTs. The nonlocal FEM analysis
of Euler–Bernoulli and Timoshenko nonlocal beam was
performed by Pradhan (Ref 52). A review paper on the
nonlocal elasticity focusing on main results and future
challenges was published by Di Paola et al. (Ref 53).
Recently, Eltaher et al. (Ref 54) published also a review on
nonlocal elastic models for bending, buckling, vibrations, and
wave propagation of nanoscale beams. In general, nonlocal
descriptions led to more flexible mechanical behavior of
nanostructures than the local form except cases when para-
doxes appear—see, for example, Fernandez-Saez et al. (Ref
55), Koutsoumaris et al. (Ref 56) and Romano et al. (Ref 57).

In the current work, the analytical calculations of eigenfre-
quencies of carbon nanotubes based on the local and nonlocal
Euler–Bernoulli beam theory were presented. Additionally, a
FEM analysis of eigenfrequency was conducted. The motiva-
tion for the present study is to propose an evaluation of
nonlocal parameter through fitting the analytical beam model
results to FEM predictions involving a space frame model of
SWCNTs. The main contribution of this work is the compu-
tation of the nonlocal parameter for SWCNTs based on the
comparison between the FEM results and nonlocal analytical
predictions for natural vibrations. The evaluation of nonlocal
parameter for carbon nanotubes presented in the literature is
mainly based on the comparison of analytical predictions with
MD modeling. MD simulations are computationally expensive.
On the other hand, experimental studies are cumbersome and
difficult to conduct at the nano-level. Thus, in the present paper,
the nonlocal parameter is verified by the FEM studies of natural
vibrations for CNT instead of MD analysis. Also, parametric
calculations are realized to investigate the influence of the
length-to-diameter ratio L/D, nonlocal parameter value, the
influence of boundary conditions on natural frequencies of
SWCNTs. The strong influence of boundary conditions and
mode numbers on the proposed nonlocal parameter is presented
and discussed.

2. Nonlocal Continuum Mechanics

Eringen (Ref 58) and Eringen and Edelen (Ref 59) first
introduced the nonlocal elastic continuum mechanics defining
that the stress state at a given point r depends not only on the
local stress at that point but also on the function of the stress
state at all points in the body. For homogenous and isotropic
elastic solids with zero body forces, the fundamental nonlocal
equations are written as (Ref 45):
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rij;j ¼ 0 ðEq 1aÞ

rij rð Þ ¼ ra r0 � rj j; sð Þr0

ij r
0ð ÞdV r0ð Þ ðEq 1bÞ

eij ¼
1

2
ui;j þ uj;i
� �

i; j ¼ 1; 2; 3 ðEq 1cÞ

where rij rð Þ nonlocal stress tensor at point r, r
0

ij r
0ð Þ is local

(classical) stress at any particular points r� within domain V,
whereas a r0 � rj j; sð Þ is the nonlocal modulus that depends on
the distance between r� and r and dimensionless length scale s
expressed as s = e0a/L. The e0 is a nonlocal material parameter
appropriate to each material, a and L are the internal and
external characteristic lengths, respectively. Mostly, in the case
of carbon nanotubes, a = 1.42 nm is the carbon–carbon bond
length, and L is described as the length of the carbon nanotube.

As an alternative approach instead of the nonlocal integral
Eq 1, an equivalent second-order differential constitutive
relation is described by (Ref 30):

r� e0að Þ2r2r ¼ r0 ðEq 2Þ

where � is the Laplace operator. The critical issue in the
nonlocal studies is to estimate the magnitude of the nonlocal
material parameter e0. The magnitude of the nonlocal material
parameter is determined experimentally or estimated by
matching the dispersion curves of plane waves with those of
atomic lattice dynamics (Ref 60).

3. Fundamental Relations for Local and Nonlocal
Beam Theory

The local (classical) Euler–Bernoulli beam equation of
motion of free vibration of carbon nanotubes is given by:

qA
@2w

@t2
þ EI

@4w

@x4
¼ 0 ðEq 3Þ

where t and x are time and the axial coordinate, respectively; w
is the deflection of SWCNT; A is the cross-sectional area and q
is the mass density of SWCNT; E and I are the elastic modulus
and the moment of inertia of a cross section, respectively. The
displacements of the vibrational solution in the SWCNT are
described by:

w ¼ X ðxÞeixt ðEq 4Þ

where x is the circular frequency. Substituting Eq 4 into Eq 3,
we obtain an equation of vibrational properties of SWCNT:

X xð Þ ¼ Asin kxð Þ þ Bcos kxð Þ þ Csinh kxð Þ þ Dcosh kxð Þ
ðEq 5Þ

where A, B, C, and D are constants. The coupling relation is as
follows:

x2 ¼ k4
EI

qA
ðEq 6Þ

in which k is a frequency parameter. The solution of Eq 5
depends on boundary conditions (BC) affected by support of a
beam. Solving Eq 5 for different boundary conditions, the

relations for eigenfunctions, eigenvalues, and eigenfrequencies
can be obtained. The applied boundary conditions (Ref 60) for
nanobeam with the length L are presented in Table 1.

Reddy (Ref 26) reformulated the equation of motion of
various kinds of beam theories available (Euler–Bernoulli,
Timoshenko, Reddy, and Levinson) using the nonlocal differ-
ential constitutive relations of Eringen. The nonlocal Euler–
Bernoulli beam equation of motion of a free vibration in carbon
nanotubes is given by (Ref 50):

qA
@2

@t2
w� ðe0aÞ2

@2w

@x2

� �
þ EI

@4w

@x4
¼ 0 ðEq 7Þ

The local (classical) Euler–Bernoulli beam equation is
obtained when the relation e0a = 0 in Eq 7. For example, the
circular vibrations for the simply supported nonlocal beam may
be presented in the following way (Ref 41):

x ¼
ffiffiffi
1

k

r
n2p2

L2

ffiffiffiffiffiffi
EI

qA

s

; k ¼ 1þ ðe0aÞ2
n2p2

L2
ðEq 8Þ

The angular frequency x is computed according to Eq 8,
and frequency f using relation f ¼ x=2p.

The value of the nonlocal parameter has the crucial
influence on the final results. As far as we know, there are no
experimental studies to calculate the magnitude of e0 for CNTs.
There are some suggestions in the literature how to define the
nonlocal scale parameter (Ref 60). Instead of determining the e0
precisely, there are some works in which the e0a value is
evaluated based on the frequency value obtain from the
theoretical models or based on the available experimental
frequencies. Eringen (Ref 61) associated the frequency given
by Born–Karman model of lattice dynamics and that of
nonlocal theory for plane waves and obtained a value of 0.39
for e0. Wang (Ref 44) calculated the scale parameter e0a lower
than 2.1 nm based on the Yoon et al. (Ref 14) experimental
observations where the measured frequency value for CNT was
about 10 THz. However, based on the Krishnan et al. (Ref 62)
experiment, the frequencies for CNTs are about 0.1 THz, and
the scale parameter e0a is lower than 210 nm (Ref 60). It is
visible that the e0a value belongs to the wide range what is
explained by the different vibration frequencies for various
CNTs. In the literature, the suggested scale coefficient values
are 0 £ e0a/L < 0.8 (Ref 60), and e0= 10.5 for L < 3.5 nm
(Ref 50) to match Euler–Bernoulli beam results to the MD
simulations. The nonlocal effect is particularly visible for short
carbon nanotubes (Ref 50).

Table 1 Boundary conditions applied to nanobeam
having length L

Nanobeam support Boundary conditions

Simply supported (S-S) X(0) = X(L) = 0
X��(0) = X��(L) = 0

Clamped–clamped (C–C) X(0) = X(L) = 0
X�(0) = X�(L) = 0

Cantilevered (C–F) X(0) = X�(0) = 0
X��(L) = X���(L) = 0
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4. Eigenfrequencies Versus Nonlocal Scale
Parameter

To analyze the eigenfrequencies of SWCNTs, the analytical
and numerical studies were conducted. In the analytical compu-
tations, the local and nonlocal Euler–Bernoulli beam model were
used, and the results for various nonlocal scale parameters were
presented. Because of the small diameter of SWCNT compared
to tube wall thickness, the circular continuum beam model was
applied, as shown in Fig. 1. In next chapter, the analytical results
will be compared with values from the numerical FEM model of
the dynamic behavior of CNT as to find the most suitable de-
scription of CNT and investigate the influence of small-scale
parameter on the eigenfrequencies. To present the comparative
studies, firstly the classical vibrational beam analysis is put
forward. In the analytical computations, for the short circular
beam models of (5,5) and (10,10) SWCNTs, the material and
geometrical data presented in Table 2 are used.

In the present research on the small-scale effect on the
vibrational behavior of CNT, the applied nonlocal parameter e0
was in the range 0 £ e0 £ 10 imposing the dimensionless
length scale parameter in the range 0 £ e0a/L £ 0.5 for
a = 0.142 nm and L = 2.83 nm (ratio a/L = 0.05). The ana-
lyzed range of e0a/L is close to the values proposed by Wang
et al. (Ref 60) for high frequencies of CNT observed
experimentally.

To consider the influence of small-scale parameter on the
dynamic behavior of CNT, the local and nonlocal Euler–
Bernoulli beam model (see Fig. 1) was studied for simply
supported (S-S), bridged (C–C) and cantilevered (C–F) bound-
ary conditions—see Table 1. Some representative results of
eigenfrequencies for the local and nonlocal Euler–Bernoulli
beam model for various e0a/L and S-S boundary conditions are
presented in Fig. 2.

When the nonlocal material parameter is introduced,
a lowering of eigenfrequencies is observed. The highest values
are for the local beam model. Comparing the local and the
nonlocal Euler–Bernoulli vibrational models, it is visible that
the small-scale parameter makes the structure more flexible.
The variations of eigenfrequency ratio versus nonlocal param-
eter for various boundary conditions for (5,5) CNTs using
material data from Table 2 are presented in Fig. 3. The
eigenfrequency ratio was computed as:

Eigen frequency ratio ¼ nonlocal eigenfrequency

local eigen frequency
ðEq 9Þ

It is observed that the increase in the small-scale parameter
e0 results in the decrease in eigenfrequencies. The decrease
varies and depends on the boundary conditions and mode
number. The eigenfrequencies for higher modes are more
sensitive to the value of e0 parameter. Finally, a faster decrease
in the free vibration values is visible for higher modes. For the
cantilevered nanotube, the lowest deterioration of eigenfre-
quencies versus e0 for the first mode is observed.

The influence of carbon nanotube length and diameter on
eigenfrequencies was also studied. The analysis considered two
cases of diameter D = 0.678 nm ((5,5) SWCNT) and
D = 1.356 nm ((10,10) SWCNT) and nanotubes having a
length from range 2.83 nm £ L £ 28.3 nm—see Fig. 4. It
can be seen that the eigenfrequencies for carbon nanotubes
decrease when the nanotube length increases for all analyzed
modes.

On the other hand, when the diameter of SWCNTs increases
also the eigenfrequency values rise. The influence of mode
number on eigenfrequencies is mostly visible for short
nanotubes for both (5,5) and (10,10) case.

The dimensionless resonant eigenfrequencies in function of
nanotube length for various nonlocal parameters from the
analyzed range 0 £ e0 £ 10 are presented in Fig. 5 for S-S
nanobeam case. We can observe the higher the nonlocal
parameter is, the lower the eigenfrequency is. Moreover, as the
nanotube length increases, the influence of nonlocal parameter
on dimensionless natural frequencies becomes less visible. To
present some representative results underlining the influence of
boundary conditions, the variation of dimensionless resonant
eigenfrequencies versus nanotube length is presented in Fig. 6
for (5,5) nanobeam assuming nonlocal parameter e0 = 2. For

Fig. 1 Continuum modeling of SWCNT: lattice structural
model (left) and circular continuum Euler–Bernoulli nanobeam
model (right)

Table 2 Material and geometric data of (5,5) and (10,10)
SWCNTs

Parameter Value

Young�s modulus E 1 9 109 N/m2

Poisson�s ratio m 0.3
Density q 1200 kg/m3

Diameter D 0.674 9 10�9 m (5,5)
1.356 9 10�9 m (10,10)

Length L (2.83 – 28.3) 9 10�9 m

Fig. 2 Comparison of eigenfrequencies for the local and the
nonlocal Euler–Bernoulli beam model for various e0a/L values for
(5,5) S-S nanobeam for a = 0.142 nm, L = 2.83 nm (ratio a/
L = 0.05) and e0 = 0, 2, 6, 10
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the assumed nonlocal parameter, the lowest resonant eigenfre-
quencies are for C–C nanotube, whereas the highest are for C–F
nanotube. The longer the nanotube is the lower influence of
boundary conditions is observed.

5. Numerical Verification

To investigate the dynamic behavior of carbon nanotubes, a
3-D structural model based on FEM was built. Here, the carbon
nanotube is presented as a space network of finite beam
elements having circular cross section, as shown in Fig. 7.

The commonly used approach to compute the elastic moduli
of beam elements is a linkage between molecular and
continuum mechanics. The linkage was initially proposed by
Odegard et al. (Ref 63) and Li and Chou (Ref 64) and is used
for example by (Ref 65-67). According to the molecular-
structural mechanics approach, a SWCNT is presented as a
space frame, in which the covalent C–C bonds are represented
as linking beams and the carbon atoms as joint nodes. Taking
into account the energy equivalence between local potentials
energies in computational chemistry and elemental strain
energies in structural mechanics, the tensile resistance, the
flexural rigidity, and the torsional stiffness for an equivalent

Fig. 3 Eigenfrequency ratio vs. nonlocal parameter for the first
three modes: (a) S-S, (b) C–C and (c) C–F for (5,5) SWCNT,
a = 0.142 nm, L = 2.83 nm (ratio a/L = 0.05)

Fig. 4 Eigenfrequencies from local Euler–Bernoulli beam model
vs. nanotube length L for the first three modes: (a) (5,5)
nanotube—diameter D = 0.678 nm, (b) (10,10) nanotube—diameter
D = 1.356 nm (S-S nanobeam case is presented; material data from
Table 2)

Fig. 5 Variation of dimensionless resonant eigenfrequency vs.
nanotube length L for various nonlocal parameters e0 ((5,5) S-S
nanobeam case is presented; a = 0.142 nm, material data from
Table 2)
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beam are computed (Ref 64, 66, 67). Mostly, the values of force
field constants are based on the values for benzene, i.e.,
ks= 652 N/m, kh = 0.876 Nm/rad2, and ks= 0.278 Nm/rad2

(Ref 63, 64). Based on the above force field constants and
assuming the C–C bond length 0.142 nm the cross-sectional
diameter, moduli of elasticity and shear of the beam element
are, respectively, 0.147 nm, 5.49 TPa and 0.871 TPa (Ref 66).
However, in the existing references, there are many force field
constants applied in analyses of SWCNTs leading to different
macroscopic material properties of nanostructure. The diverse
values of the force field constants and the related elastic
constants for beam elements used in FEM modeling are
discussed by Hu et al. (Ref 68). The range of elastic properties
for beam elements (Eb—beam Young�s modulus and Poisson�s
ratio, mb) representing the C–C bonds according to analysis of
force field constants is presented by Hu et al. (Ref 68) and is as
follows: Eb = (0.83 � 1.25) TPa and mb = 0.16 � 0.29
assuming C–C bond diameter t = 0.34 nm. Also, in the paper
by Domı́nguez-Rodrı́guez et al. (Ref 67), the sensitivity of FEA
predictions to the bond force field constants is discussed taking
as baseline the set of the bond force constants for benzene used,
e.g., by (Ref 63). Besides the various force field constants
applied in the modeling of carbon nanotubes, the scatter in the

thicknesses of SWCNTs is addressed in the literature (Ref 63-
68). The wall thickness is presented in the range of 0.066-
0.34 nm (Ref 3), and commonly adopted value in FEA is
0.34 nm (Ref 68). Assuming the diameter of C–C bond equal to
the wall thickness of SWCNT t = 0.34 nm, various bond
stiffness of C–C bond is applied in FEA, i.e., Eb = 1.3TPa by
Wernik and Meguid (Ref 69), Eb = 1.16TPa by Tserpes et al.
(Ref 70), Eb = 1.06 TPa by Hu et al. (Ref 68), Eb = 1.04 TPa
by Shokrieh and Rafiee (Ref 66), Eb = 1 TPa Tongoyette et al.
(Ref 71).

In the present structural modeling of SWCNT based on the
literature review (Ref 3, 8, 63-71) and the earlier works of the
author, e.g. (Ref 72), it was assumed for the single beam
element representing the C–C bond: the length a = 0.142 nm,
the stiffness Eb = 1000GPa, Poisson�s ratio mb = 0.3 and the
bond diameter equal to the assumed nanotube thickness
t = 0.34 nm. For the beam element having circular cross
section, the assumption here Eb = 1000GPa and t = 0.34 nm
gives the elastic constant ks = 639 N/m (see Ref 72), which is
close to the value ks = 652 N/m, e.g., in the work (Ref 63). To
verify the present results of eigenfrequencies for assumed Eb,
mb, the elastic constants for the beam element were computed
based on the force field constants used by Odegard et al. (Ref
63) and direct relationships between the structural mechanics
parameters and the molecular mechanics parameters presented
by Tserpes and Papanikos (Ref 65) for t = 0.34 nm and
a = 0.142 nm. The computed values were as follows: Eb =
1020GPa and mb = 0.16. Next, the sensitivity of FEA predic-
tions to the elastic constants of beam elements was analyzed.
The values of eigenfrequencies for Eb = 1020GPa and mb =
0.16 were about 1-1.5% higher than for Eb = 1000GPa and
mb = 0.3 used in the present numerical model. So, the results for
Eb = 1000 GPa and mb = 0.3 for the structural FE model of the
nanotube are presented and discussed here.

In the current numerical modeling, the single-walled carbon
nanotube (5,5) with the average diameter Dave = 0.674 nm, the
length L = 2.83 nm (L/D ratio = 4.2) having 240 carbon atoms
was considered. Only the interatomic interactions between the
closest neighbors in the C–C network were considered (Ref 9,
63-65). The eigenfrequencies for the SWCNT for different
boundary conditions resulted from numerical analyses are listed
in Table 3. It is visible that the eigenfrequencies from FEM
model are also very sensitive to the boundary conditions. The
influence of BC is particularly visible for low modes, whereas
for higher modes the differences become less visible.

To verify the present results from FEM modeling, a
comparison of fundamental eigenfrequencies of SWCNTs with
literature is listed in Table 4. Results shown in Table 4 are
limited to the fundamental eigenfrequencies connected with
short armchair SWCNTs having a small diameter. For small
length, the influence of boundary conditions is highly visible
(see Fig. 6 and Ref 9, 16, 31). The data in Table 4 are divided
according to the length of (5,5) nanotubes. The current results
from the molecular-structural (MSM) FE model are compared
with eigenfrequencies obtained from molecular dynamics
simulations. Based on available data in the literature, the listed
results show only values of fundamental eigenfrequencies for
C–F and C–C boundary conditions however in the present
work also S-S boundary conditions were analyzed. It is visible
that the eigenfrequencies obtained in the current FE model are
comparable with results from MD analyses presented by Hu
et al. (Ref 31), Ansari et al. (Ref 13) and Zhang et al. (Ref 73)

Fig. 6 Variation of dimensionless resonant eigenfrequency vs.
nanotube length L for various boundary conditions conducted for
(5,5) nanotube assuming nonlocal parameter e0 = 2, a = 0.142 nm
and D = 0.678 nm

Fig. 7 Structural numerical model of (5,5) SWCNT for
Dave = 0.674 nm, L = 2.83 nm, a = 0.142 nm, t = 0.34 nm
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for short (5,5) SWCNTs. The present results maintain the
tendency of the decrease in eigenfrequencies in the function of
increasing length of nanotube. In Table 4, the values obtained

from MSM analysis are also presented for (6,6) SWCNTs to
demonstrate the influence of the diameter increase in nan-
otubes. For the very close value of L/D being 6.12 for (5,5) and

Fig. 8 Ten mode shapes of (5,5) SWCNT with (a) C–C and (b) C–F boundary conditions

Table 4 Comparison of fundamental eigenfrequencies of SWCNTs with C–F and C–C boundary conditions with
the literature

L (nm) L/D Chirality

Fundamental eigenfrequency (GHz)

Method Investigator(s)C–F C–C

1.70 2.52 (5,5) 550 … MD Hu et al. (Ref 31)
2.83 4.20 (5,5) 373 1814 MSM and FE Present study
3.14 4.67 (5,5) 247 … MD Ansari et al. (Ref 13)
3.27 4.86 (5,5) … 1068 MD Zhang et al. (Ref 73)
4.12 6.12 (5,5) 136 660 MD Hu et al. (Ref 31)
4.88 6.00 (6,6) 150 710 MSM Li and Chou (Ref 16)

Table 3 FEM results of eigenfrequencies of (5,5) SWCNT (GHz)

Mode no.

Boundary conditions

Mode no.

Boundary conditions

S-S C–F C–C S-S C–F C–C

1 1383 373 1814 6 3544 2001 4048
2 1385 373 1817 7 5873 4079 5937
3 2001 1645 3370 8 5900 4084 5962
4 3321 1816 3932 9 5948 4946 6412
5 3540 1818 3937 10 5991 5665 6418
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6.00 for (6,6) the higher frequencies are presented for the
nanotube with higher diameter.

The numerical model based on the structural mechanic�s
approach allows presentation of all possible modes, including
bending modes, axial modes, and radial breathing modes. The
modes for C–C and C–F beam are presented in Fig. 8.

6. Nonlocal Parameter Fitting

The FEM and analytical results of the eigenfrequencies have
been contrasted to determine the nonlocal material parameter
for the SWCNTs. The graphical comparison of CNT eigenfre-
quencies for first three modes resulted from the numerical
structural FEM model, and the analytical Euler–Bernoulli
model is presented in Fig. 9. It should be pointed out that the
comparison takes into account only the flexural modes. Thus,
Fig. 9 presents only, for example, for S-S boundary conditions
the first, the sixth and the tenth mode resulted from the FEM
analysis (see Table 3). The local beam model overpredicts the
eigenfrequencies for the SWCNTs. It is especially noticeable
for higher modes. For example, for the second mode for C–F
boundary conditions, the difference between the FEM results
and the local beam model is about 80%. In general, the values
generated from the FEM are much lower than the values from
the analytical local beam models. The difference in the
eigenfrequencies varies versus boundary conditions.

In the present work, the selection of the most suitable small-
scale material parameter e0 for SWCNTs was based on the
fitting the eigenfrequencies obtained from the analytical
calculations to the numerical FEM results. The determination
of the nonlocal parameter e0 is presented in Table 5. The fitted
value of the nonlocal parameter is not constant but depends on
the boundary conditions. The smallest value of e0 = 2 was
determined for the simply supported boundary conditions,
whereas the highest value of e0 = 10 was computed for the
cantilevered carbon nanotube. The nonlocal parameter deter-
mined for the cantilevered carbon nanotube is very close to the
value e0 = 10.5 presented in a paper of Hu et al. (Ref 31) by
fitting the local beam model to the molecular dynamics results
for short CNTs. The calculations in Table 5 also revealed the

Fig. 9 The eigenfrequencies from the FEM analysis and the local
Euler–Bernoulli model for (a) the first, (b) the second and (c) the
third mode

Table 5 The determination of the nonlocal small-scale parameter e0 of (5,5) SWCNT

Mode no. FEM E–B local e0 E–B nonlocal Error, %

Eigenfrequency (GHz), S-S
1 1383 1435 2 1368 1
2 3544 5741 2 4856 37
3 5991 12920 2 9384 56

Eigenfrequency (GHz), C–C
1 1813 3229 6 1860 2
2 3931 8970 6 3494 11
3 6411 17580 6 5084 20

Eigenfrequency (GHz), C–F
1 372 511 10 372 0
2 1818 3229 10 1257 30
3 4080 8970 10 2206 46
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increase in fitting errors for higher modes for all boundary
conditions. So, not only the boundary conditions but also the
mode number influence on the value of the nonlocal parameter.
However, in the computations listed in Table 5, it was assumed
that the resonant frequency is the most important for the CNT-
based NEMS applications. Thus, the main point was to
determine the nonlocal scale parameter for the first mode.

7. Summary

In the present work, the eigenfrequency comparison
obtained from the finite element analysis and the analytical
beam model was used to determine the magnitude of the
nonlocal material parameter for the carbon nanotubes. In
contrast to other works, the determination of eigenfrequencies
involved FEM modeling instead of commonly used MD
simulations. It was shown that the application of the nonlocal
beam models involves analysis of the small-scale parameter, in
which value determines the final eigenfrequencies and varies
with both boundary conditions and the mode number. The
proposed methodology involving the comparison between 3-D
frame FEM results and local analytical beam models is helpful
in the determination of nonlocal material parameter for
SWCNTs. According to the present work, the following
conclusions can be drawn:

• The highest values of eigenfrequencies are observed for
the local beam model (Fig. 2).

• The eigenfrequencies increase with the mode number
(Fig. 2).

• The vibration frequencies generally decrease with the in-
crease in nonlocal parameter (Fig. 3).

• The vibration frequencies are mainly influenced by bound-
ary conditions (Fig. 3).

• For long carbon nanotubes, the influence of nonlocal
parameter is vanishing (Fig. 4 and 5).

• The increase in the diameter of SWCNT causes the in-
crease in eigenfrequencies (Fig. 4).

• The influence of mode number on eigenfrequencies is vis-
ible for short nanotubes (Fig. 4).

• The influence of boundary conditions is vanishing for
long SWCNTs (Fig. 5).

• In general, the values generated from the FEM analysis
are much lower than the values from the analytical local
beam models (Fig. 9).

• The numerical validation of nonlocal parameter revealed
the high dependence on boundary conditions and mode
number (Table 5).

The results presented in the paper are helpful in the investi-
gation and design of carbon nanotubes-based NEMS in which
nonlocal effects are significant.
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