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In this paper, the wear mechanism of punches made of M3:2 and M2 steel sheet which are used in blanking
process of the rotor part of the low-power asynchronous motor was presented. The influence of additional
TiN coating on the punch flank surface degradation intensity was described. The punch wear influence on
the hardness changes close the material intersection surface was determined. The research results indicate
that the tool durability ensures the quality of parts blanked from electrotechnical steel. The results will
allow for selection of new tools materials for this type of tools which are used in difficult tribological

conditions.
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1. Introduction

The silicon steel sheet is commonly used for the manufac-
turing of the electrical machines stator and rotor parts. Most
often they are produced s a single blanked parts which are
assembled in the package. The most widespread and highly
efficient manufacturing technology of this part is blanking
process. The tool wear in blanking process results in increase in
the concentration size of the plastic deformation in sheared
blank close to the intersection surface (Ref 1). In the deformed
silicon steel sheet, the undesirable residual magnetic appears,
which causes increase the sheet structure grains pre-magneti-
zation current during a passage of current direction change (Ref
2). In the case of electrical machines is not advantageous to
increase in magnetic lossiness (Ref 1). The magnetic lossiness
can be reduced by using the laser cutting process. The laser
cutting processes have still smaller efficiency in comparison
with the classic blanking process (Ref 3). Furthermore, the laser
cutting process generates material deformation (thermal) close
to the cutting area, which causes a decrease in magnetic
properties of electrical machines (Ref 4).

The blanking process of the parts with appropriate quality
requires selection of the optimal process parameters (Ref 5, 6).
Gréban et al. in their paper (Ref 5) presented the effects of parts
blanking from copper alloy sheets material. Tekiner et al. (Ref
6) presented the experimental analysis results of the blanking
process for aluminum alloy parts. The effects of the aluminum
alloy structure changes in the blanking and bending process
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were presented by Ravela et al. (Ref 7). They showed that the
grains size of blanked sheet affects on the intersection surface
quality and burr height.

The wear, during the blanking process, causes the change of
cutting surface quality and the burr height (Ref 8-16). As a
result of tool cutting edge friction wear the cutting radius
increase, which significantly affects on the blanking process
energy consumption (Ref 12, 13), whereas Hernandez et al.
(Ref 8) studied the effect of punch flank surface wear on the
burr height. In studies, the change of punch cutting edge was
modeled, and the burr height on stainless steel blanked part
edge was observed. He demonstrated that there is an optimal
value of punch-die clearance due to the burr height. The burr
height can be reduced by using appropriate blanking clearance
(Ref 9-15).

Depending on material group and sheet thickness, the
recommended values of blanking clearance are assumed (Ref
15). These are indicative values (Table 1). The pun-die
clearance affects on the sheet material separation process;
hence, the sheared blanks surface quality is obtained (Ref 17).
The clearance value is particularly important in blanking
process of very small and accurate parts (Ref 18).

Due to the sharp edges and the burr on the blanked elements
before coiling winding the insulation is applied (Fig. 1). The
paper insulation in the grooves protects windings from wire
coating damaging. Additional insulation increases electrical
motor production costs and manufacturing time. Hence, it is
reasonable to carry out research related to burr height reduction
and its changes as a results of cutting edge wear.

Number of factors, including the material type, influence on
the tool flank surface wear during the blanking process (Ref
19). The most commonly used materials for blanking tools are
the casted high-speed steels such as M2, K945, M42 and steels
manufactured by sintering technology such as ASP23, ASP30,
ASP60 (ASP-Asea Stora Process) (Ref 16). Tool material
development is related to increasing of tool lifetime by
improving mechanical, tribological and thermophysical prop-
erties of tool material. One of these ways is to increase the
mechanical properties, including wear resistance, by modifica-
tion surface of the blanking tools.

Anti-wear coatings (applied by PVD or CVD method) on
the cutting tools reduce the intensity of flank surface and

Volume 26(4) April 2017—1865


http://crossmark.crossref.org/dialog/?doi=10.1007/s11665-017-2589-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11665-017-2589-7&amp;domain=pdf

Table 1 Cutting clearance per side (percentage of stock thickness) (Ref 15)

Material Irregulars contour, % Round, %
Aluminum
Soft, less than 3/5” thick 3 2
Soft, more than 3/5” thick 5 3
Hard 5-8 4-6
Brass and copper
Soft 3 2
Medium 4 3
Hard 5-6 4
Steel
Low carbon soft 3 2
Medium 4 2
Hard 5 3
Silicon steel 4-5 3
Stainless steel 5-8 4-6

(©

Fig. 1 Electric motor construction: (a) a single element of rotor, (b)
rotor with windings and paper insulation in the grooves, (c) electri-
cal motor assembly

cutting edge wear. The tribological aspects of TiN coating on
the M2 steel were presented in the Hong et al. paper (Ref 20).
Cheung et al. (Ref 21) studied the influence of blanking process
parameters change, in this the ASP30 punch material, on the
shearing edge wear rate in blanking process of stainless steel
sheets and aluminum alloy sheets. He studied the additional
TiN coating layer influence on the punch wear process. Punch
material has an impact on the cutting edge wear process. A wide
range of blanking test of C5191-RH (0.254 mm) phosphorous
bronze sheet, for different punch materials, is presented by Lo
et al. (Ref 22).

In the case of blanking process of materials with special
mechanical properties, it is reasonable to carry out an
experimental research to determine appropriate parameters of
cutting process.

In present paper, the wear mechanism of the M2 and M3:2
steel punches used in the process of the part blanking from
M530-50A silicon steel sheets was described. The analysis of
the tool wear influence on the intersection surface quality of
rotor sheets and on the hardening zone change was presented.

1866—Volume 26(4) April 2017

Results of experimental research of punch-die clearance
influence on the intersection surface quality were discussed.

2. Experimental Procedure

2.1 Blanking Process Methodology

The research was conducted to explain the tool wear
mechanism during part blanking process of the M530-50A
silicon steel sheet. The blanking process was carried out in
industrial conditions. The wear test was conducted during the
blanking process of the rotor and stator sheet plates used in
low-power asynchronous electrical machine—Fig. 2(a). Differ-
ent values of the punch-die clearance and different tools
materials were used. The blanking clearance of (L.) = 0, 4 and
8% was defined as follows (Fig. 2b):
Lz:“;x 100 (%), (Eq 1)
where t—sheet thickness, s—one side clearance (Fig. 2b)
determined from the relation

~D-d

s = —— (mm),

3 (Eq 2)

where D—die hole dimension, d—punch dimension in tool
axial cross section.

The blanking process was carried out up to 800,000 cuts.
Then the tools were sharpened. The blanking speed value was
constant (200 cuts/min).

In experimental analysis of the tool wear effect on the
intersection surface quality punches made by M2, M3:2 steel
material and materials with TiN coatings (M2+TiN, M3:2+TiN)
were used. The chemical compositions of these materials are
presented in Table 2. The M3:2 steel (ASP 23 Vanadis, Powder
Metallurgically Produced High Speed Steel) is a material with
7980 kg/m® average density and HRC 66 hardness after
toughening, and M2 steel has 7750 kg/m® average density
and 63 HRC hardness. The punch coatings were applied by
physical vapor deposition (PVD) method. The TiN coating had
a yellow color, about 2300 HVS hardness and 3.5-4 pm of
thickness.

In experimental research of punch wear influence on the
intersection surface quality and on the material hardness change
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close to the cutting edge of rotor sheets, the M530-50A (M 45
according AISI standard) silicon steel sheet was used. The sheet
thickness was ¢ = 0.5+ 0.02 mm. The chemical composition
and mechanical properties are presented in Tables 3 and 4. The

I.Oj

(b)

Fig. 2 Stator (1) and rotor (2) elements blanked from silicon steel
sheet (a), and the tool arrangement during the blanking process (b)

Table 2 Chemical composition of punches material (wt.%)

primary structure of sheet material is presented in Fig. 3. The
sheets had a Co-type insulating coating of ~7+1.5 um
thickness (Ref 23). The C6 coating layer is applied by
manufacturers of these silicon steel sheets types. The mineral
elements have been selected to reduce punching tool wear and
favor punching oil retention. They also enhance the rigidity of
the varnish, which minimizes dimensional changes under high
pressure/temperature.

2.2 Measurements and Observations Methodology

During the blanking tools wear increasing, the burr height
on the blanked parts is changing (Ref 24). By measuring of the
burrs height, the tool exploitation phase can be deter-
mined—indirect method (Fig. 4).

The bur height measurements were realized only for rotor
sheets edges (Fig. 5a) on the test stand with Taylor Hobson
SUTRONIC 3+surface analyzer. The measurement accuracy
was £0.5 pm. The measurement idea is presented schemati-
cally in Fig. 5(b). The arrangement of the planes of the
profilograph gauging point movements in accordance with the
burrs line is presented in Fig. 5(c). Measurements on selected
measuring length were done for four points, in which the
maximal burr height was observed. For these points, the
measurements were repeated three times. Examples of mea-
surement results are presented in Fig. 6. The average burr
height was calculated from the formula presented in Fig. 6(b).
In addition, selected parts of the punches were scanned by
using Taylor Hobson inductive scanning head. This allowed to
make a topography of the blanking tools.

The observation and the measurement of the zones on the
blanked part intersection surface (Fig. 7) were done by using
Optech XJL-17 optical microscope with Satisec 81UP CCD
digital camera.

The area of material changes was determined by indirect
method—hardness measurement. The material hardness was
measured by using MATSUZAWA microhardness equipment.
Pyramid with 136° apex angle was used as a penetrator. The

Chemical elements

Material C Mnmax Simax Pmax Smax Cr w Mo \% Fe
M2 (SW7M) 0.82-0.92 0.4 0.5 0.03 0.03 3.54.5 6.0-7.0 4.5-5.5 1.7-2.1 Rest
M3:2 (ASP 23) 1.19-1.21 4.11-4.13 6.33-6.37 4.6-4.8 3.1-3.2 Rest

Table 3 Chemical composition of M530-50A silicon steel sheet material (wt.%)

P C Si S Mn

Cr Ni Cu Al Fe

0.01 0.01 1.43 0.007 0.365

<0.01 <0.01 0.05 0.335 Rest

Table 4 Mechanical properties of MS30-50A (material No. 1.0813) silicon steel sheets material

Yield Tensile

strengthR, » strengthR Reduction Fracture AreaS,, Young’s modulusE
(MPa) (MPa) of areaZ (%) elongationAS (%) (mmz) HardnessHV5 (MPa)

245 417 33 10 126 2.2e+5
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measurement was carried out at load of 0.100 kg with the
penetration time set up to 10 s. Initial hardness before sheet
blanking process was 145 HVO0.1 (average from 5 measure-
ments). The distance between measuring point was determined
on 0.05 mm, and the measurement points grid is presented in
Fig. 8.

The hardness measurements were always carried out from
the base point (point on the measurement points grid in Fig. 8).
Depending on the intersection edge, contour measurements
were done in points in material. These points of measurement
points grid beyond the material were excluded. Results were
used in computer program so as to have the same base (two
lines in Fig. 8). Then it was possible to create a graphs. The

Grain boundary Grain

Fig. 3 Structure of M530-50A silicon steel sheet material

»
'
»
'

Burr height change
Tool wear intensity

Number of parts (cuts)

Fig. 4 Tool wear curve with the work periods and burr height
curve of the blanked element (1—running-in period, 2—period of
moderate wear, 3—period of accelerated wear)

hardened area positions on the sheet samples are presented in
Fig. 9.

3. Results and Discussion

3.1 Tool Wear

During the blanking process, the punches are wearing-out
especially on the punch flank surface on the distance of sheared
blanks pushing out from the separation zone (Fig. 2b). A
preliminary observation by an optical microscope was done
after 500,000 sheared blanks for M2 and M3:2 punch materials
and the punch-die clearance of 8% (Fig. 10). The abrasive wear
was observed. On the tool flank surface, the very small hard
and crushed particles “2” were clearly visible (Fig. 10a).
Under the pressure of the blanked sheets, these particles are
adhering. This is an adhesive wear of the tool surfaces. Hard
particles adhered to the tool surfaces affect on the flank surface
defecting during the blanking process. For the M3:2 material,
the particles adhered boundary is clearly visible (Fig. 10b). The
concentration of the adhered particles was observed on the
contact line ends between blanked material and punch material.
On the surface between cutting edge and end of material-punch
line contact, the scratches were observed. Subsequent analysis
was carried out after 3D surface scanning.

In general, the material degradation and loss of the material
in the outer layer of abrasive wear are related to:

* microcutting, when Ay/4, = 0;

* ridging (plastic deformation in the contacts area and upset-
ting of the material form each side of groove) when A/
A, =1,

. scgratching (material is partially plastically deforming and
partially cutting in the form of the micro-chips as a prod-
ucts of the wear process), when 0 < Ay/4, < 1. 4, , was
determined in relation to the punch base surface (Fig. 11).

The primary tool flank surface of M3:2 material is presented in
Fig. 12a. After 500,000 sheared blanks, numerous adhered of
abrasion product was obtained (Fig. 12b). The abrasion prod-
ucts were moved from cutting edge to inside of cutting surface.
Areas of abrasion product accumulation were created. With
increasing of cuts number to 800,000 the surface close to
cutting edge had a bigger material losses—Fig. 12c. After
500,000 cuts (with the 4% clearance), the punch made of M2
material had a numerous signs of wear on the flank surface such
as scratches and grooves (Fig. 13). Further test, with this value
of punch-die clearance, was stopped due to the high value of
burr on the part edges. The surface of M3:2 punch material,

(a) (b)

Fig. 5 Burr height measurement on the blanked rotor part: (a) measuring line in rotor sheet plates, (b) measuring idea, (c) planes arrangement

scheme
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Fig. 8 Measurement points grid to determining the hardness chan-
ges close to the cutting edge

after 500,000 sheared blanks, was in better condition and
characterized by a smaller degradation (Fig. 12b and 13).

Next analysis of the punch surface wear was presented for
tools with TiN coating and 0 and 8% values of punch-die
clearance. The contact between punch and unleashed silicon
steel sheets caused an abrasive wear process (Fig. 14). The dark
zone on the punch circumference shown that in the TiN coating
layer the microstructures was changed. The intensity of the
microstructure changes was observed after more number of
cuts.

Journal of Materials Engineering and Performance

(b)

Fig. 9 Samples for metallographic observation (a), and the observa-
tion area close to the intersection surface on the part cross section

(b)

The microstructure of the M3:2 sintered steel in comparison
with M2 casted steel is more uniform and refinement (Ref 25).
The M2 steel has a higher ductility, so therefore is more
susceptible on ridging (Fig. 12b and 13). Reduction in this
phenomena intensity can be obtained by using titanium nitride
(TiN) coatings. For tools made of M3:2 steel due to the
structure refinement, abrasive wear and microspallings were
observed (Fig. 12b). After unleashing the silicon steel sheet, the
contact of hard inclusions in silicon steel sheet with inclusion in
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Fig. 10 Punch flank surface after 500,000 sheared blanks: (a) M2;
80x zoom, (b) M3:2; 160x zoom (8% of blanking clearance, sur-
face image)

m | 20pm

Fig. 11 Wear types criterion (4,—material cross section which has
been removed (groove), A,—material cross section close to this
scratches)

punch material was obtained. As a result of cyclical repetition
of this process, the gradual degradation of the tools surface was
observed.

The tool wear and its intensity are related to the blanking
process parameters. The wear heavily depends on the tools
protective coatings and the technology of coating applying (Ref

1870—Volume 26(4) April 2017

26). The punch wear has an influence on the blanking process
energy consumption (Ref 13).

For the 800,000 sheared blanks, the greatest wear was
obtained for the 0% of punch-die clearance (Fig. 15). With
increasing of cuts number, the abrasion product is adhered and
moved with the punch movement. In the case of a strong
adhesion of coating and adhered particles, the TiN layer
degradation and punch material unleashing were obtained.

Punches made of M3:2+TiN materials were more resistant
to wear than punches made by M2+TiN materials. In Fig. 16
and 17, some examples of tool surface scanned by 3D scanning
head and observed on the scanning microscope were presented.
On the tool surface scan after several thousands of cuts, some
TiN coating layer thickness decrement was obtained (Fig. 18).
Close to the tool edge, the TiN coating layer was completely
destroyed. In the case of blanking with the 8% of blanking
clearance, small flank surface wear was observed. The coating
layer was undamaged except a few long grooves (longitudinal
cavities). Hard inclusions, which may contain a sheet material,
scratch the punch flank surface. In some zones, small spalling
of the coating layer occurred (Fig. 17b). From the tool front,
the coating layer was wear-out less than in case with 0% of
blanking clearance. In blanking process with 0% of blanking
clearance, the tool face surface was wear-out less and tool flank
surface was wear-out more (Fig. 15b).

During the blanking process with high value of the blanking
clearance (8%), the sheet is bending and the sheet material is
moving alone the punch face surface. Hence, the tool face surface
is wear-out more intensively (Fig. 15a). In addition, value of the
punch edge radius is increasing. The surface degradation for
punch made of M3:2+TiN materials (Fig. 17b) is different than in
the case of punch made of M2+TiN materials (Fig. 16b). Similar
differences in wear were observed in the case of punch-die
clearance of 0% for punch with and without TiN coating layer
(Fig. 17a). High-speed steel (casted steel) is less resistant to
ridging. After a certain time, the coating layer in zones of strong
ridging is spalling (Fig. 16 and 17). The M3:2 sintered steel is
more wear resistant. In both cases, the TiN coating layer inhibits
the flank surface wear. However, the friction process caused that
the coating layer is damaging, the punch material is unleashing,
and the layer boundary is changing with increasing of cuts
numbers (Fig. 19b). The friction process causes that the coating
was damaged and punch material was exposed. The boundary of
punch material exposition is changed with increase in cuts
number (Fig. 16b). The coating layer boundary is not linear. On
the detail, the remaining layer was observed (see detail in
Fig. 16b). The line layout is not a result of the TiN coating layer
wear. These are the microcavities obtained during the punch
manufacturing by using the wire electrical discharge machine.

3.2 Burr and Intersection Surface

The changes in the sheared blank magnetic properties are
caused by intersection surface shape error, by burr on the edge
and by increase in material hardness close to the intersection line
(Ref 2-4, 27, 28). Therefore, the quality control of the intersec-
tion surface after blanking process is an extremely important, in
the case of magnetic materials. The sizes of the intersection zones
during the blanking process are changing (Ref 14).

Tool wear which increases with blanking time causes the
size change of the sheared blanks zones (Fig. 19). For 0 and 8%
of the blanking clearance and initial cuts, the differences of the
intersection zones were observed (Fig. 20). The changes of
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(c) Edge

Fig. 12 Punch flank surface of the M3:2 material: (a) after initial cuts, (b) after 500,000 cuts, (c) after 800,000 cuts (4% of blanking clearance,

surface scan)

Fig. 13 Flank surface of the M2 punch material after 500,000 cuts
(4% of blanking clearance, surface scan)

their size value largely depend on the blanking clearance
(Fig. 21). The intensity of that changes depends on the tool
wear. The plastic deformations zones are: rounding zone (7,)
and cut zone (z;—Fig. 21. During the blanking process with
wear-out tool, the rounding and the cracking zones are
increasing, and the intersection zone is decreasing.

The blanking process with M2 steel punch was stopped after
500,00 cuts because the burr height value was 36-38 um. The
blanked sheets and tools are contacted dynamically. It results in
material spalling (Fig. 22), which results of local increasing of
the burr height. Thus, the comparison of punch material and
coating layer was made up to 500,000 cuts (Fig. 23). The
biggest differences of the burr height for 800,000 cuts were
obtained for 0% of blanking clearance. For the M2 steel
material, applying of the TiN coating layer resulted in the
biggest increasing effect of the tool durability. Slightly small
tool durability increasing effect was obtained for M3:2 steel
material at 500,000 cuts. During the blanking process with 0%
of blanking clearance, the punch edges wear is more intensive.
The M2 steel punches with TiN coating layer had the smallest
wear resistant from all punches with coatings (Fig. 24 and 25).
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TiN coated

1 .
——— 100 pm ——— 100 pm
Fig. 14 Punch flank surface after a several thousand cuts (punch
with TiN coating, L, = 0%)

To analyze the influence of blanking clearance on the
increase intensity of burr height, the shearability indicator (7;)
was defined as:

W=

s (Eq 3)

n—number of sheared blanks, /#,—average burr height mea-
sured on selected edge of sheared blank.

During the blanking process, different blanking clearance
(L, =0, 4, 8%) and different punches material with TiN
coating layers were used. Differentiation of the blanking
clearances and punch materials made it possible to analyze
the impact of the blanking clearance on the shearability rate
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Fig. 15 Punch cutting edge changes after 800,000 cuts (tool with TiN coating); punch profile for blanking clearance: (a) L. = 8%; (b) L. = 0%

(a) (b)

Fig. 16 Flank surface of the M2+TiN punch material after 800,000 cuts with blanking clearance: (a) 0%, (b) 8%

as a function of the cuts number. In the analysis of the blanking process with the 8% of blanking clearance, the
shearability rate, the blanking clearance impact on the highest shearability was obtained (low values of the average
shearability rate curve rise was obtained (Fig. 26). For the burr height on the sheared blanks). Reduction in the blanking
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Fig. 18 Punch flank surface fragment after 800,000 cuts with 8%
of blanking clearance (punch material: M3:2+TiN)

} Fracture

— 100 pm

(b) — 100 pm (c)

Fig. 19 Sheet material surface: (a) C6 coating surface quality, and
the intersection for the 8% of blanking clearance—(b) after initial
cuts, (c) after 800,000 cuts
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72 pm

(b)

125 um

(a) TS

Fig. 20 Intersection surface boundary for the initial cuts for blank-
ing clearance: (a) 0% and (b) 8% (M3:2+TiN punch materials)

clearance from 4 to 0% for the M3:2+TiN punch materials
affected minimally the shearability rate curve. After achieve-
ment of 600,000 cuts, the shearability rate curve slope
significantly decreased. In the case of M2+TiN punch
materials for the blanking clearance L. = 0%, the value of
the shearability rate starts decreasing after 600,000 cuts, for
L. = 4% after 650,000 cuts and for L. = 8% after 700,000
cuts. This was due to achieving the fatigue strength limit of
the tool material, which caused increasing of the tool edge
wear and increasing of the burr height. The most preferred
shearability for the three values of blanking clearance was
obtained for the M3:2+TiN punches.

3.3 Plastic Deformation Zone

Despite the sheet deformation during the blanking process,
the C6 coating type was not pull. Both straight (Fig. 27a) and
curved (Fig. 27b) intersection line the coating has a coherent
structure with the sheets material.

The cutting edge wear has a big impact on the size of the
hardening zone close to the intersection line. The initial
changes of the blanked material structure are results of the
selected blanking clearance. The sheet material has an appro-
priate grain primary structure (Fig. 3). The blanking process
caused the changes of the grain size and its position in zone
close to intersection surface.

During the cuts number, increasing the tools surfaces and
cutting edges are wear-out. An example of microstructure
changes, close to the intersection surface as a result of blanking
with sharp (Fig. 28a) and wear-out punch (Fig. 28b), is
presented. Hence, the punch-die clearance is increasing, and
the shear stress directions are changing in accordance with the
theoretical intersection surface (Ref 7). The hardening area
increases as a result of deformation close to the cutting surface.
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Fig. 21 Sheet intersection surface for the L. = 0 and 8% of blanking clearance (M3:2+TiN punch material)

Fig. 22
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Fig. 23  Average burr height achieved after 500,000 sheared blanks
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The tools geometry changes influence on the value and size of
microhardness changes of the sheet material in vicinity of the
cutting line. The hardened layer thickness is related to plastic
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Each of the changes of the grain structure size by work
hardening or annealing is affecting on the magnetic properties
of sheet material (Ref 29, 30). Therefore, the appropriate
blanking clearance and punch material choose, for keeping
stable and predictable blanked material deformations, is an
extremely important issue. The hardness changes measurement
after the blanking process allows to define the zone of the
microstructure changes and thereby to define the magnetic
properties changes of blanked parts (Ref 31).

The maximum increase of M530-50A silicon steel sheet
material hardness changes was observed close to the cutting
line (Fig. 29), in the vicinity of the crack initiation after the end
of plastic cutting phase. The sheets microhardness for all
samples was about 250 HVO0.1. The difference was in the size
of the maximum hardness zone. The hardness of the most
strained material was 1.72 times greater than the average
hardness of undeformed sheets (145 HVO0.1). The material
strengthening is so high that the plastic cutting phase is end,
and appearing microcracks begin the fracture phase. The
microhardness distribution and size of the hardness changes
zone were depended on the punch wear. During the cutting
edge wear-out process, the strain state was changing, which
caused the changes of the material strengthening process. In
addition, the microhardness distribution, close to the intersec-
tion surface, after the initial cuts was different for different
values of blanking clearance (0 and 8%). For clearance close to
0%, the zone of the deformation changes is relatively small
(Fig. 29-1). It increases with the tool wear (Fig. 29-2 and 3).
The tool wear during the blanking process significantly
increases the plastic strain zone and deteriorates the magnetic
properties of the sheared blank. In blanking process with 8% of
blanking clearance, the zone of plastic deformation (Fig. 29-4,
5, 6) is greater than in case with 0% of blanking clearance.

4. Summary

The quality of the sheared blanks, which are used for rotor
and stator elements in the electrical motors, depends on several
blanking process parameters. For the generator sheets blanking
process, application of the punches with additional TiN coating
layer reduces the cutting edge wear intensity and expands the
period of the tool normal use. The abrasion was greatest for the
TiN coating layer applied on the M3:2 punch material. For the
M2+TiN punch materials, the mixed wear process was
obtained. Despite the maintenance of constant condition in
blanking process, the zone of the hardened material microstruc-
ture was expanding.

The experimental research has shown that there is a
blanking clearance which ensures the possibilities of having
the constant burr height value for relatively large number of
cuts. For the large value of the blanking clearance, the burr
height can be reduced by the material structure which will be
more deformed.

The size of the clearance between the punch and die cutting
edges has significant influence on the tool cutting edge wear
and the sheared blanks quality. In the case of 0% of blanking
clearance, the tool cutting edge wear is more intensively, the
burr height is higher, and the plastic deformation zone is
smaller. The grains are less deformed than for 8% of blanking
clearance. Blanking with bigger size of the punch-die clearance
results in decreasing the cutting tool wear intensity, but the
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sheared blanks intersection surface quality is worst and the
zone of plastic deformation is extending.
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