Skip to main content
Log in

Optimizing Heat-Treated Al-BDC@TiO2 to Improve the Electrochemical Properties of Lithium-Sulfur Batteries

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries (Li-S) are highly promising due to their high energy density and specific capacity; however, the poor conductivity of the active material leads to slow reaction kinetics, and the shuttle effect of the intermediate product lithium polysulfides leads to rapid capacity decay. Here, the effective encapsulation of Al-BDC by TiO2 particles is achieved by encapsulating an aluminum-based metal organic framework (Al-BDC) with terephthalic acid as the organic ligand and heat-treating at different temperatures. This method shows that the TiO2 particles can effectively encapsulate Al-BDC while maintaining the structural stability of Al-BDC after heat treatment at 400°C. The TiO2 crystallization is disordered after heat treatment at 300°C, and the TiO2 is exfoliated and the Al-BDC is collapsed after heat treatment at 500°C. In addition, TiO2 particles can be partially filled into the pores of Al-BDC. Therefore, Al-BDC@TiO2-400 can effectively inhibit the shuttle of polysulfides, and the corresponding Li-S batteries can achieve relatively high discharge specific capacity, rate performance and cycling stability. In particular, the Al-BDC@TiO2-400@S can achieve an initial discharge specific capacity of 907.6 mAh g−1 at 0.1C, and 686.5 mAh g−1 at 2C with remained capacity of 379.8 mAh g−1 after 400 cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z.-H. Xie, Z.-X. Huang, Z.-P. Zhang, M.-Z. Rong, and M.-Q. Zhang, Imparting pulley effect and self-healability to cathode binder of Li-S battery for improvement of the cycling stability. Chin. J. Polym. Sci. 41, 95 (2022).

    Article  Google Scholar 

  2. S.H. Chung and A. Manthiram, Current status and future prospects of metal-sulfur batteries. Adv. Mater. 31, 1901125 (2019).

    Article  Google Scholar 

  3. Y. Song, W. Cai, L. Kong, J. Cai, Q. Zhang, and J. Sun, Rationalizing electrocatalysis of Li-S chemistry by mediator design: progress and prospects. Adv. Energy Mater. 10, 1901075 (2019).

    Article  Google Scholar 

  4. C. Dong, C. Zhou, Y. Li, Y. Yu, T. Zhao, G. Zhang, X. Chen, K. Yan, L. Mai, and X. Xu, Ni single atoms on MoS2 nanosheets enabling enhanced kinetics of Li-S batteries. Small 19, 2205855 (2022).

    Article  Google Scholar 

  5. C. Geng, W. Qu, Z. Han, L. Wang, W. Lv, and Q.H. Yang, Superhigh coulombic efficiency lithium-sulfur batteries enabled by in situ coating lithium sulfide with polymerizable electrolyte additive. Adv. Energy Mater. 13, 2204246 (2023).

    Article  CAS  Google Scholar 

  6. K. Shen, H. Mei, B. Li, J. Ding, and S. Yang, 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 8, 1701527 (2017).

    Article  Google Scholar 

  7. J. Yu, J. Xiao, A. Li, Z. Yang, L. Zeng, Q. Zhang, Y. Zhu, and L. Guo, Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem. Int. Ed. 59, 13071 (2020).

    Article  CAS  Google Scholar 

  8. S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao, J. Luo, X. Lin, X. Niu, M. Wu, R. Li, and X. Sun, Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li-S batteries. ACS Energy Lett. 4, 755 (2019).

    Article  CAS  Google Scholar 

  9. S. Ohno, R. Koerver, G. Dewald, C. Rosenbach, P. Titscher, D. Steckermeier, A. Kwade, J. Janek, and W.G. Zeier, Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li-S batteries. Chem. Mater. 31, 2930 (2019).

    Article  CAS  Google Scholar 

  10. D.K. Lee, S.J. Kim, Y.J. Kim, H. Choi, D.W. Kim, H.J. Jeon, C.W. Ahn, J.W. Lee, and H.T. Jung, Graphene oxide/carbon nanotube bilayer flexible membrane for high-performance Li-S batteries with superior physical and electrochemical properties. Adv. Mater. Interfaces 6, 1801992 (2019).

    Article  CAS  Google Scholar 

  11. W. Kong, L. Yan, Y. Luo, D. Wang, K. Jiang, Q. Li, S. Fan, and J. Wang, Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv. Funct. Mater. 27, 1606663 (2017).

    Article  Google Scholar 

  12. R. Wang, J. Yang, X. Chen, Y. Zhao, W. Zhao, G. Qian, S. Li, Y. Xiao, H. Chen, Y. Ye, G. Zhou, and F. Pan, Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv. Energy Mater. 10, 1903550 (2020).

    Article  CAS  Google Scholar 

  13. F. Pei, L. Lin, A. Fu, S. Mo, D. Ou, X. Fang, and N. Zheng, A Two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries. JOULE 2, 323 (2018).

    Article  CAS  Google Scholar 

  14. C. Zhu, J. Wang, G. Xu, X. Du, C. Chen, X. Yang, C. Bao, and G. Gao, 3D pill-structured Ti-MOF@S composite cathodes for high-performance Li–S batteries. CrystEngComm 25, 2892 (2023).

    Article  CAS  ADS  Google Scholar 

  15. H. Shi, Z. Sun, W. Lv, S. Xiao, H. Yang, Y. Shi, K. Chen, S. Wang, B. Zhang, Q.-H. Yang, and F. Li, Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries. J. Energy Chem. 45, 135 (2020).

    Article  Google Scholar 

  16. F. Wu, L. Shi, D. Mu, H. Xu, and B. Wu, A hierarchical carbon fiber/sulfur composite as cathode material for Li-S batteries. Carbon 86, 146 (2015).

    Article  CAS  Google Scholar 

  17. R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang, H.M. Cheng, C. Liu, and F. Li, 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries. Adv. Mater. 28, 3374 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. X. Wang, Y. Hao, G. Wang, N. Deng, L. Wei, Q. Yang, B. Cheng, and W. Kang, YF3/CoF3 co-doped 1D carbon nanofibers with dual functions of lithium polysulfudes adsorption and efficient catalytic activity as a cathode for high-performance Li-S batteries. J. Colloid Interface Sci. 607, 922 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. X. Hong, R. Wang, Y. Liu, J. Fu, J. Liang, and S. Dou, Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 42, 144 (2020).

    Article  Google Scholar 

  20. X. Liu, J.Q. Huang, Q. Zhang, and L. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29, 1601759 (2017).

    Article  Google Scholar 

  21. G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z.W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D.S. Wu, Q. Zhang, and Y. Cui, Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. PNAS 114, 840 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. W.G. Lim, C. Jo, A. Cho, J. Hwang, S. Kim, J.W. Han, and J. Lee, Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation. Adv. Mater. 31, 1806547 (2018).

    Article  Google Scholar 

  23. F. Qi, Z. Sun, X. Fan, Z. Wang, Y. Shi, G. Hu, and F. Li, Tunable interaction between metal-organic frameworks and electroactive components in lithium-sulfur batteries: status and perspectives. Adv. Energy Mater. 11, 2100387 (2021).

    Article  CAS  Google Scholar 

  24. Y. Zhao, M. Wu, Y. Guo, N. Mamrol, X. Yang, C. Gao, and B. Van der Bruggen, Metal-organic framework based membranes for selective separation of target ions. J. Membr. Sci. 634, 119407 (2021).

    Article  CAS  Google Scholar 

  25. X. Hu, T. Huang, G. Zhang, S. Lin, R. Chen, L.-H. Chung, and J. He, Metal-organic framework-based catalysts for lithium-sulfur batteries. Coord. Chem. Rev. 475, 214879 (2023).

    Article  CAS  Google Scholar 

  26. Y. Hou, H. Mao, and L. Xu, MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res. 10, 344 (2016).

    Article  Google Scholar 

  27. V. Shrivastav, S. Sundriyal, P. Goel, H. Kaur, S.K. Tuteja, K. Vikrant, K.-H. Kim, U.K. Tiwari, and A. Deep, Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coord. Chem. Rev. 393, 48 (2019).

    Article  CAS  Google Scholar 

  28. B. Huang, Y. Li, and W. Zeng, Application of metal-organic framework-based composites for gas sensing and effects of synthesis strategies on gas-sensitive performance. CHEMOSENSORS 9, 226 (2021).

    Article  CAS  ADS  Google Scholar 

  29. L. He, Y. Dong, Y. Zheng, Q. Jia, S. Shan, and Y. Zhang, A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard. Mater. 361, 85 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. J. Peng, Y. Sun, Y. Wu, Z. Lv, and Z. Li, Selectively trapping ethane from ethylene on metal-organic framework MIL-53(Al)-FA. Ind. Eng. Chem. Res. 58, 8290 (2019).

    Article  CAS  Google Scholar 

  31. J. Chen, X. Wang, W. Feng, W. Zhao, and Z. Shi, Application of ZIF-8 coated with titanium dioxide in cathode material of lithium-sulfur battery. J. Solid State Electrochem. 25, 2065 (2021).

    Article  CAS  Google Scholar 

  32. S. Deng, Y. Yan, L. Wei, T. Li, X. Su, X. Yang, Z. Li, and M. Wu, Amorphous Al2O3 with N-doped porous carbon as efficient polysulfide barrier in Li–S batteries. ACS Appl. Energy Mater. 2, 1266 (2019).

    Article  CAS  Google Scholar 

  33. W. Jiang, J. Pan, J. Wang, J. Cai, X. Gang, X. Liu, and Y. Sun, A coin like porous carbon derived from Al-MOF with enhanced hierarchical structure for fast charging and super long cycle energy storage. Carbon 154, 428 (2019).

    Article  CAS  Google Scholar 

  34. K. Zou, W. Jing, X. Dai, X. Chen, M. Shi, Z. Yao, T. Zhu, J. Sun, Y. Chen, Y. Liu, and Y. Liu, A Highly efficient sulfur host enabled by nitrogen/oxygen dual-doped honeycomb-like carbon for advanced lithium-sulfur batteries. Small 18, 2107380 (2022).

    Article  CAS  Google Scholar 

  35. X. Shang, T. Qin, P. Guo, K. Sun, H. Su, K. Tao, and D. He, A novel strategy for the selection of polysulfide adsorbents toward high-performance lithium-sulfur batteries. Adv. Mater. Interfaces 6, 1900393 (2019).

    Article  Google Scholar 

  36. W. Xiao, K. Yoo, J.H. Kim, and H. Xu, Breaking barriers to high-practical Li-S batteries with isotropic binary sulfiphilic electrocatalyst: creating a virtuous cycle for favorable polysulfides redox environments. Adv. Sci. 10, 2303916 (2023).

    Article  CAS  Google Scholar 

  37. A. Gupta, and A. Manthiram, Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li2S in lithium–sulfur batteries. J. Mater. Chem. A 9, 13242 (2021).

    Article  CAS  Google Scholar 

  38. Y. Zhu, Y. Zuo, F. Ye, J. Zhou, Y. Tang, and Y. Chen, Dual-regulation strategy to enhance electrochemical catalysis ability of NiCo2O4-x for polysulfides conversion in Li-S batteries. Chem. Eng. J. 428, 131109 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Technology Innovation Program funded by the National Key Laboratory of New Metallic Materials Open Fund (2022-Z01), Shaanxi Provincial Science and Technology Department Project (2023-ZDLGY-24, 2023-JC-QN-0473), Industrialization project of Shaanxi Provincial Education Department (21JC018).

Funding

This work is supported by the Technology Innovation Program funded by the National Key Laboratory of New Metallic Materials Open Fund (2022-Z01), Shaanxi Provincial Science and Technology Department Project (2023-ZDLGY-24, 2023-JC-QN-0473).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Chen or Juan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 483 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., Chen, L., Wu, D. et al. Optimizing Heat-Treated Al-BDC@TiO2 to Improve the Electrochemical Properties of Lithium-Sulfur Batteries. J. Electron. Mater. 53, 1133–1141 (2024). https://doi.org/10.1007/s11664-023-10888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10888-8

Keywords

Navigation