Skip to main content
Log in

Electroless Plating of Ru Using Hydrazine Hydrate as a Reducing Agent

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ruthenium (Ru)—a high-melting-point precious metal—has attracted attention for use as ultrafine interconnections in large-scale integrations. This is because the resistivity of Ru interconnects is not expected to increase with a reduction in the interconnect width owing to their short mean free path for electrons. In this study, we investigated electroless plating of Ru using hydrazine hydrate as a reducing agent to obtain low-resistivity Ru films. We obtained polycrystalline Ru films on a thin (10-nm) catalytic chemical-vapor-deposited Ru underlayer. The electroless Ru films exhibited significant grain growth upon annealing at 600°C in a forming gas (N2:H2 = 9:1). The Ru (101) and (100) crystalline orientations were strengthened by annealing, and the resistivity decreased from 160 µΩ cm to 22 µΩ cm concomitantly. Thermal desorption spectroscopy showed that the electroless Ru films contained impurities, such as CO, CO2, NH3, O, C, and H2. Desorption of C, CO, CO2, and NH3 showed peak maxima at approximately 450–500 K. These impurity molecules likely came from the inclusion of the complexing agents (tartaric acid: C4(OH)4O2, and ammonium chloride: NH4Cl) and reducing agent (hydrazine: N2H2) into the Ru film. Desorption of these molecules during annealing may improve the grain growth of polycrystalline Ru and reduce its resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.-C. Yang, F.R. McFeely, P.-C. Wang, K. Chanda, and D.C. Edelstein, Selective chemical vapor deposition-grown Ru for Cu interconnect capping applications. Electrochem. Solid State Lett. 13–5, D33 (2010).

    Article  Google Scholar 

  2. P.R. Gadkari, A.P. Warren, R.M. Todi, R.V. Petrova, and K.R. Coffey, Comparison of the agglomeration behavior of thin metallic films on SiO2. J. Vacuum. Sci. Technol. A23, 1152 (2005).

    Article  Google Scholar 

  3. W.T. Lim and C.H. Lee, Highly oriented ZnO thin films deposited on Ru/Si substrates. Thin Solid Films 353, 12 (1999).

    Article  CAS  Google Scholar 

  4. J.Z. Shi, S.N. Piramanayagam, C.S. Mah, H.B. Zhao, J.M. Zhao, Y.S. Kay, and C.K. Pock, Influence of dual-Ru intermediate layers on magnetic properties and recording performance of CoCrPt-SiO2 perpendicular recording media. Appl. Phys. Lett. 87(22), 222503 (2005).

    Article  Google Scholar 

  5. Y. Huai, J. Zhang, G.W. Anderson, P. Rana, S. Funada, C.-Y. Hung, M. Zhao, and S. Tran, Spin-valve heads with synthetic antiferromagnet CoFe/Ru/CoFe/IrMn. J. Appl. Phys. 85, 5528 (1999).

    Article  CAS  Google Scholar 

  6. J.-S. Jang, D.-J. Kim, S.-J. Park, and T.-Y. Seong, Electrical characteristics of thermally stable Ru and Ru/Au ohmic contacts to surface-treated p-type GaN. J. Electron. Mater. 35, 94 (2006).

    Google Scholar 

  7. J.H. Lin, J.H. Lee, C.-S. Hsu, and J.S. Fang, Fifteen-Nanometer Ru diffusion barrier on NiSi/Si for a sub 45 nm Cu contact plug. J. Electron. Mater. 38(11), 2251 (2009).

    Article  CAS  Google Scholar 

  8. O. Chyan, T.N. Arunagiri, and T. Ponnuswamy, Electrodeposition of copper thin film on ruthenium: a potential diffusion barrier for Cu interconnects. J. Electrochem. Soc. 150, C347 (2003).

    Article  CAS  Google Scholar 

  9. B.H. Choi, Y.H. Lim, J.H. Lee, B.K. Kim, H.-N. Lee, and H.K. Lee, Preparation of Ru thin film layer on Si and TaN/Si as diffusion barrier by plasma enhanced atomic layer deposition. Microelectron. Eng. 87, 1391 (2010).

    Article  CAS  Google Scholar 

  10. C.-K. Hu, J. Kelly, H. Huang, K. Motoyama, H. Shobha, Y. Ostrovski, J. H.-C. Chen, R. Patlolla, B. Peethala, P. Adusumilli, T. Spooner, R. Quon, L. M. Gignac, C. Breslin, G. Lian, M. Ali, J. Benedict, X. S. Lin, S. Smith, V. Kamineni, X. Zhang, F. Mont, S. Siddiqui, F. Baumann, Future on-chip interconnect metallization and electromigration, in Proceedings of 2018 IEEE International Reliability Physics Symposium (IRPS), 4F1.1–1.6 (2018)

  11. S.H. Hsieh, W.J. Chen, and C.M. Chien, Structural stability of diffusion barriers in Cu/Ru/MgO/Ta/Si. Nanomaterials 5(4), 1840 (2015).

    Article  CAS  Google Scholar 

  12. C.-K. Hu, Electromigration and resistivity in on-chip Cu, Co and Ru damascene nanowires, in Proceedings 2017 IEEE International Interconnect Technology Conference (2017).

  13. J.M. Purswani and D. Gall, Electron scattering at single crystal Cu surfaces. Thin Solid Films 516, 465 (2007).

    Article  CAS  Google Scholar 

  14. D. Gall, Electron mean free path in elemental metals. J. Appl. Phys. 119, 085101 (2016).

    Article  Google Scholar 

  15. S.-H. Kim, H.T. Kim, S.-S. Yim, D.-J. Lee, K.-S. Kim, H.-M. Kim, K.-B. Kim, and H. Sohn, A bilayer diffusion barrier of ALD-Ru/ALD-TaCN for direct plating of Cu. J. Electrochem. Soc. 155, H589 (2008).

    Article  CAS  Google Scholar 

  16. S.-H. Choi, T. Cheon, S.-H. Kim, D.-H. Kang, G.-S. Park, and S. Kim, Thermal atomic layer deposition (ALD) of Ru films for Cu direct plating. J. Electrochem. Soc. 158, D351 (2011).

    Article  CAS  Google Scholar 

  17. Y.S. Chan and M.L. Chou, Microstructure evolution of newly developed electroless ruthenium deposition on silicon observed by scanning transmission electron microscope. J. Appl. Phys. 69, 7848 (1991).

    Article  Google Scholar 

  18. J.-Y. Chen, S.-L. Huang, P.-W. Wu, and P. Lin, Electroless deposition of Ru films on Si substrates with surface pretreatments. Thin Solid Films 529, 426 (2011).

    Article  Google Scholar 

  19. J.-Y. Chen, Y.C. Hsieh, L.-Y. Wang, and P.-W. Wu, Electroless deposition of Ru films via an oxidative-reductive mechanism. J. Electrochem. Soc. 158, D463 (2011).

    Article  CAS  Google Scholar 

  20. W.J. Dressick, L.M. Kondracki, M.S. Chen, S.L. Brandow, E. Matijevic, and J.M. Calvert, Characterization of a colloidal Pd(II)-based catalyst dispersion for electroless metal deposition. Colloids Surf. A 108–1, 101 (1996).

    Article  Google Scholar 

  21. P. Scherrer, Bestimmung der größe und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Göttinger Nach richten Math. Phys. 2, 98 (1918).

    Google Scholar 

  22. K. He, N. Chen, C. Wang, L. Wei, and J. Chen, Method for determining crystal grain size by x-ray diffraction. Crst. Res. Technol. 53(2), 1700157 (2018).

    Article  Google Scholar 

  23. J.J. Kim and S.-K. Kim, Optimized surface pretreatments for copper electroplating. Appl. Surf. Sci. 183(3–4), 31 (2001).

    Article  Google Scholar 

  24. K.H. Kim, T. Lim, K.J. Park, H.C. Koo, M.J. Kim, and J.J. Kim, Investigation of Cu growth phenomena on Ru substrate during electroless deposition using hydrazine as a reducing agent. Electrochim. Acta. 151, 249 (2015).

    Article  CAS  Google Scholar 

  25. J. Paul Chen and L.L. Lim, Key factors in chemical reduction by hydrazine for recovery of precious metals. Chemosphere 49, 363 (2002).

    Article  Google Scholar 

  26. S.S. Djokić, Electroless deposition of cobalt using hydrazine as a reducing agent. J. Electrochem. Soc. 144(7), 2358 (1997).

    Article  Google Scholar 

  27. J. Kelly, V. Kamineni, X. Lin, A. Pacquette, M. Hopstaken, Y. Liang, H. Amanapu, B. Peethala, L. Jiang, H. Shobha, M. Aymond, and B. Haran, Annealing and impurity effects in Co thin films for MOL contact and BEOL metallization. J. Electrochem. Soc. 166(1), D3100 (2018).

    Article  Google Scholar 

  28. S.Y. Li, J.A. Rodriguez, J. Hrbek, H.H. Huang, and G.Q. Xu, Reaction of hydrogen with O/Ru (001) and RuOx films: formation of hydroxyl and water. J. Vac. Sci. Technol. A15, 1692 (1997).

    Article  Google Scholar 

  29. K. Fuchs, Conduction electrons in thin metallic films, in Proceedings of the Cambridge Philosophical Society, vol. 34 (1938)

  30. E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 50(6), 499 (2001).

    Article  Google Scholar 

  31. H.D. Liu, Y.P. Zhao, G. Ramanath, S.P. Murarka, and G.C. Wang, Thickness dependent electrical resistivity of ultrathin (< 40 nm) Cu films. Thin Solid Films 384(1), 151 (2001).

    Article  CAS  Google Scholar 

  32. K. Barmak, A. Gungor, C. Cabral Jr., and J.M.E. Harper, Annealing behavior of Cu and dilute Cu-alloy films: precipitation, grain growth, and resistivity. J. Appl. Phys. 94(3), 1605 (2003).

    Article  CAS  Google Scholar 

  33. N. Fukumuro, Y. Fukai, H. Sugimoto, Y. Ishii, H. Saitoh, and S. Yae, Superstoichiometric hydride PdHx ≤ 2 formed by electrochemical synthesis: dissolution as molecular H2 proposed. J. Alloys Compd. 825, 153830 (2020).

    Article  CAS  Google Scholar 

  34. I. Koiwa, K. Deguchi, Y. Haijima, N. Hirashita, and K. Maejima, Analyses of plated films by thermal desorption spectrometry (TDS). Surf. Eng. 28–9, 674 (2012).

    Article  Google Scholar 

  35. Z. Wang, O. Yaegashi, H. Sakaue, T. Takahagi, and S. Shingubara, Bottom-up fill for submicrometer copper via holes of ULSIs by electroless plating. J. Electrochem. Soc. 151(12), C781 (2004).

    Article  CAS  Google Scholar 

  36. S. Shingubara, Z. Wang, S. Yaegashi, R. Obata, H. Sakaue, and T. Takahagi, Bottom-up fill of Cu in deep submicron holes by electroless plating. Electrochem. Solid State Lett. 7, C78 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr Y. Morita for his great contribution in the early stage of this study, and to the High Voltage TEM Research Center of Osaka University. We thank Adam Brotchie, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoso Shingubara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saida, R., Shimizu, T., Ito, T. et al. Electroless Plating of Ru Using Hydrazine Hydrate as a Reducing Agent. J. Electron. Mater. 52, 6690–6698 (2023). https://doi.org/10.1007/s11664-023-10605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10605-5

Keywords

Navigation