Skip to main content
Log in

High Breakdown Voltage GaN Schottky Diodes for THz Frequency Multipliers

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Quasi-vertical gallium nitride (GaN) Schottky diodes on silicon carbide (SiC) substrates were fabricated for frequency multiplier applications. The epitaxial structure employed had an n layer of 590 nm with doping 6.6 × 1016 cm−3, while the n+ layer was 950 nm thick, with doping 2 × 1019 cm−3. Potassium hydroxide (KOH) chemical surface treatment before Schottky contact metallization was employed to study its effect in improving the diode parameters. The KOH-treated diode demonstrated a breakdown voltage of − 27.5 V, which is the highest reported for this type of diode. Cut-off frequencies around 500 GHz were obtained at high reverse bias (− 25 V) in spite of high series resistance. The result obtained in breakdown voltage value warrants further research in surface treatment and post-annealing of the Schottky contact optimization in order to decrease the series resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.H. Siegel, Terahertz technology. IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002). https://doi.org/10.1109/22.989974.

    Article  Google Scholar 

  2. P.H. Siegel, THz instruments for space. IEEE Trans. Antennas Propag. 55, 2957–2965 (2007). https://doi.org/10.1109/TAP.2007.908557.

    Article  Google Scholar 

  3. H.J. Song and T. Nagatsuma, Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1, 256–263 (2011). https://doi.org/10.1109/TTHZ.2011.2159552.

    Article  Google Scholar 

  4. T. Kleine-Ostmann, and T. Nagatsuma, A review on terahertz communications research. J. Infrared Millim. Terahertz Waves. 32, 143–171 (2011). https://doi.org/10.1007/s10762-010-9758-1.

    Article  Google Scholar 

  5. H.B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.C. Zhang, Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE. 95, 1514–1527 (2007). https://doi.org/10.1109/JPROC.2007.898903.

    Article  CAS  Google Scholar 

  6. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, THz imaging and sensing for security applications - Explosives, weapons and drugs. Semicond. Sci. Technol. (2005). https://doi.org/10.1088/0268-1242/20/7/018.

    Article  Google Scholar 

  7. P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).

    Article  Google Scholar 

  8. G. Chattopadhyay, Technology, capabilities, and performance of low power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 1, 33–53 (2011). https://doi.org/10.1109/TTHZ.2011.2159561.

    Article  CAS  Google Scholar 

  9. I. Mehdi, J.V. Siles, C. Lee, and E. Schlecht, THz diode technology: status, prospects, and applications. Proc. IEEE. 105, 990–1007 (2017). https://doi.org/10.1109/JPROC.2017.2650235.

    Article  CAS  Google Scholar 

  10. Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Schmitz, H. Fung, S. Kim, and M. Micovic, Ultrahigh-speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz. IEEE Electron Device Lett. 36, 549–551 (2015). https://doi.org/10.1109/LED.2015.2421311.

    Article  CAS  Google Scholar 

  11. J.V. Siles, and J. Grajal, Capabilities of GaN Schottky multipliers for LO power generation at millimeter-wave bands, Proc. 19th Int. Symp. Sp. Terahertz Technol. 28–30 (2008).

  12. J.V. Siles and J. Grajal, Physics-based design and optimization of Schottky diode frequency multipliers for terahertz applications. IEEE Trans. Microw. Theory Tech. 58, 1933–1942 (2010). https://doi.org/10.1109/TMTT.2010.2050103.

    Article  Google Scholar 

  13. J.S. Ward, G. Chattopadhyay, J. Gill, H. Javadi, C. Lee, R. Lin, A. Maestrini, F. Maiwald, I. Mehdi, E. Schlecht, and P. Siegel, Tunable broadband frequency-multiplied terahertz sources, 33rd Int. Conf. Infrared Millim. Waves 16th Int. Conf. Terahertz Electron. 2008, IRMMW-THz 2008. 6–8 (2008). https://doi.org/10.1109/ICIMW.2008.4665437.

  14. A. Maestrini, I. Mehdi, J.V. Siles, J.S. Ward, R. Lin, B. Thomas, C. Lee, J. Gill, G. Chattopadhyay, E. Schlecht, J. Pearson, and P. Siegel, Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz. IEEE Trans. Terahertz Sci. Technol. 2, 177–185 (2012). https://doi.org/10.1109/TTHZ.2012.2183740.

    Article  Google Scholar 

  15. C. Jin, M. Zaknoune, D. Ducatteau, and D. Pavlidis, E-beam fabricated GaN schottky diode: high-frequency and non-linear properties. IEEE MTT-S Int. Microw. Symp. Dig. (2013). https://doi.org/10.1109/MWSYM.2013.6697734.

    Article  Google Scholar 

  16. S. Liang, Y. Fang, D. Xing, Z. Zhang, J. Wang, H. Guo, L. Zhang, G. Gu, and Z. Feng, GaN planar Schottky barrier diode with cut-off frequency of 902 GHz. Electron. Lett. 52, 1408–1410 (2016). https://doi.org/10.1049/el.2016.1937.

    Article  CAS  Google Scholar 

  17. S. Liang, X. Song, L. Zhang, Y. Lv, Y. Wang, B. Wei, Y. Guo, G. Gu, B. Wang, S. Cai, and Z. Feng, A 177–183 GHz high-power GaN-based frequency doubler with over 200 mW output power. IEEE Electron Device Lett. 41, 669–672 (2020). https://doi.org/10.1109/LED.2020.2981939.

    Article  CAS  Google Scholar 

  18. G. Di Gioia, M. Samnouni, V. Chinni, P. Mondal, J. Treuttel, M. Zegaoui, G. Ducournau, M. Zaknoune, and Y. Roelens, GaN Schottky diode on sapphire substrate for THz frequency multiplier applications. Micro Nanostruct. 164, 107116 (2022). https://doi.org/10.1016/j.spmi.2021.107116.

    Article  CAS  Google Scholar 

  19. L. Liu, and J.H. Edgar, Substrates for gallium nitride epitaxy. Mater. Sci. Eng. R Reports. 37, 61–128 (2002). https://doi.org/10.1016/S0927-796X(02)00008-6.

    Article  Google Scholar 

  20. L. Romano, Properties, Processing and Applications of Gallium Nitride and Related Semiconductors INSPEC (Stevenage: The Institution of Electrical Engineers, 1999).

    Google Scholar 

  21. Q. Wahab, A. Ellison, A. Henry, E. Janzén, C. Hallin, J. Di Persio, and R. Martinez, Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes. Appl. Phys. Lett. 76, 2725–2727 (2000). https://doi.org/10.1063/1.126456.

    Article  CAS  Google Scholar 

  22. L.L. Smith, S.W. King, R.J. Nemanich, and R.F. Davis, Cleaning of GaN surfaces. J. Electron. Mater. 25, 805–810 (1996). https://doi.org/10.1007/BF02666640.

    Article  CAS  Google Scholar 

  23. S.N. Mohammad, Contact mechanisms and design principles for Schottky contacts to group-III nitrides. J. Appl. Phys. (2005). https://doi.org/10.1063/1.1856226.

    Article  Google Scholar 

  24. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, 08 Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie: PerkinElmer Corporation, 1979).

    Google Scholar 

  25. S.W. King, J.P. Barnak, M.D. Bremser, K.M. Tracy, C. Ronning, R.F. Davis, and R.J. Nemanich, Cleaning of AlN and GaN surfaces. J. Appl. Phys. 84, 5248–5260 (1998). https://doi.org/10.1063/1.368814.

    Article  CAS  Google Scholar 

  26. K.N. Lee, S.M. Donovan, B. Gila, M. Overberg, J.D. Mackenzie, C.R. Abernathy, and R.G. Wilson, Surface chemical treatment for the cleaning of AlN and GaN surfaces. J. Electrochem. Soc. 147, 3087–3090 (2000). https://doi.org/10.1149/1.1393860.

    Article  CAS  Google Scholar 

  27. M. Diale, and F.D. Auret, Effects of chemical treatment on barrier height and ideality factors of Au/GaN Schottky diodes. Phys. B Condens. Matter. 404, 4415–4418 (2009). https://doi.org/10.1016/j.physb.2009.09.039.

    Article  CAS  Google Scholar 

  28. G. Moldovan, M.J. Roe, I. Harrison, M. Kappers, C.J. Humphreys, and P.D. Brown, Effects of KOH etching on the properties of Ga-polar n-GaN surfaces. Philos. Mag. 86, 2315–2327 (2006). https://doi.org/10.1080/14786430500522628.

    Article  CAS  Google Scholar 

  29. K.A. Rickert, A.B. Ellis, F.J. Himpsel, J. Sun, and T.F. Kuech, N-GaN surface treatments for metal contacts studied via x-ray photoemission spectroscopy. Appl. Phys. Lett. 80, 204–206 (2002). https://doi.org/10.1063/1.1430024.

    Article  CAS  Google Scholar 

  30. G. Landgren, R. Ludeke, Y. Jugnet, J.F. Morar, and F.J. Himpsel, The oxidation of GaAs(110): a reevaluation. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2, 351–358 (1984). https://doi.org/10.1116/1.582823.

    Article  CAS  Google Scholar 

  31. J.L. Weyher, S. Müller, I. Grzegory, and S. Porowski, Chemical polishing of bulk and epitaxial GaN. J. Cryst. Growth. 182, 17–22 (1997). https://doi.org/10.1016/S0022-0248(97)00320-5.

    Article  CAS  Google Scholar 

  32. L. Zhang, S. Liang, Y. Lv, D. Yang, X. Fu, X. Song, G. Gu, P. Xu, Y. Guo, A. Bu, Z. Feng, and S. Cai, High-power 300 GHz solid-state source chain based on GaN doublers. IEEE Electron Device Lett. 3106, 1–1 (2021). https://doi.org/10.1109/LED.2021.3110781.

    Article  Google Scholar 

  33. F.A. Padovani, Thermionic emission in AuGaAs Schottky barriers. Solid State Electron. 11, 193–200 (1968). https://doi.org/10.1016/0038-1101(68)90078-6.

    Article  CAS  Google Scholar 

  34. B.L. Sharma ed., Metal-Semiconductor Schottky Barrier Junctions and Their Applications. (Boston: Springer, 1984). https://doi.org/10.1007/978-1-4684-4655-5.

    Book  Google Scholar 

  35. F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, Influence of high-temperature GaN annealed surface on the electrical properties of Ni/GaN Schottky contacts. J. Appl. Phys. (2008). https://doi.org/10.1063/1.3006133.

    Article  Google Scholar 

  36. H.G. Kim, S.H. Kim, P. Deb, and T. Sands, Effect of KOH treatment on the Schottky barrier height and reverse leakage current in Pt/n-GaN. J. Electron. Mater. 35, 107–112 (2006). https://doi.org/10.1007/s11664-006-0191-0.

    Article  CAS  Google Scholar 

  37. M.C.A.M. Koolen, J.A.M. Geelen, and M.P.J.G. Versleijen, An improved de-embedding technique for on-wafer high-frequency characterization. Proc Bipolar Circuits Technol. Meet (1992). https://doi.org/10.1109/bipol.1991.160985.

    Article  Google Scholar 

  38. A.Y. Tang, V. Drakinskiy, K. Yhland, J. Stenarson, T. Bryllert, and J. Stake, Analytical extraction of a Schottky diode model from broadband S-parameters. IEEE Trans. Microw. Theory Tech. 61, 1870–1878 (2013). https://doi.org/10.1109/TMTT.2013.2251655.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French ANR (Agence Nationale de la Recherche), under the CE24 ‘SchoGAN’ project. This work was also supported by the CPER “Photonics for Society”, the CPER “WAVETECH”, and the Hauts de France Regional Council and the French Network RENATECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Di Gioia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Gioia, G., Frayssinet, E., Samnouni, M. et al. High Breakdown Voltage GaN Schottky Diodes for THz Frequency Multipliers. J. Electron. Mater. 52, 5249–5255 (2023). https://doi.org/10.1007/s11664-023-10499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10499-3

Keywords

Navigation