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Abstract
Micro- and nanostructures in vapor-phase-grown AlN on face-to-face annealed sputtered AlN (FFA Sp-AlN) templates 
formed on nanopatterned sapphire substrates (NPSS) were comprehensively analyzed using transmission electron micros-
copy. The comparison between metal–organic vapor-phase epitaxy-grown AlN/FFA Sp-AlN/hole-type NPSS (Sample MOH) 
and hydride vapor-phase epitaxy-grown AlN/FFA Sp-AlN/cone-type NPSS (Sample HVC) showed apparent differences in 
the morphology of dislocation propagation, presence of voids, shape of polarity inversion boundaries, and crystal structure 
on the slope region of NPSS. Notably, cross-sectional and plan-view observations revealed that the quality of FFA Sp-AlN 
significantly affects the threading dislocation density in the vapor-phase-grown layer. At the slope region of the AlN/NPSS 
interface, γ-AlON was observed in the MOH sample, while highly misaligned AlN grains were observed in the HVC sam-
ple. These characteristic crystal structures affect the occurrence of dislocations via different mechanisms in each sample. 
This study provides practical information for strategically controlling the micro- and nanostructures formed in AlN/NPSS 
structures for high-performance AlGaN-based deep-ultraviolet emitters.

Keywords AlN · nanopatterned sapphire substrate · transmission electron microscopy · metalorganic vapor-phase epitaxy · 
hydride vapor-phase epitaxy · face-to-face annealed sputter-deposited AlN

Introduction

AlN grown on sapphire substrates is transparent to deep-
ultraviolet (DUV) light, less expensive than AlN freestand-
ing substrates, and used as the substrate part of DUV light-
emitting diodes (LEDs) and laser diodes.1–10 DUV light 
has several applications in sterilization, water purification, 
sensing, and biochemical industries.11–13 The recent global 
outbreak of COVID-19 has increased the demand for DUV 
light with the ability to inactivate severe acute respiratory 
syndrome coronavirus.14–16 The realization of high-quality 
AlN templates is essential for developing high-performance 
DUV light emitters.

Miyake et al. reported a method for fabricating inexpen-
sive and high-quality AlN layers on sapphire substrates by 
combining the sputtering method with annealing in a face-
to-face setup (FFA Sp-AlN).17 The AlN template fabricated 
by this method achieved a record-low threading disloca-
tion density in the  107  cm−2 range and has attracted atten-
tion for its application in AlGaN-based DUV LEDs.18,19 
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Consequently, DUV LEDs fabricated on FFA Sp-AlN 
achieved an external quantum efficiency (EQE) of 8.0% at 
263 nm, a wavelength with a high bactericidal effect.20 An 
attempt to fabricate FFA Sp-AlN templates in combination 
with nanopatterned sapphire substrates (NPSS) has also 
been reported.21,22 Since NPSS can prevent cracks by strain 
relaxation and improve the light extraction efficiency,22–26 
improved EQE is expected when NPSS are implemented 
in AlGaN DUV LEDs using FFA Sp-AlN. However, the 
current threading dislocation density of the vapor-phase-
grown thick AlN on the FFA Sp-AlN/NPSS template is in 
the  108  cm−2 range.21,22 This threading dislocation density 
leaves room for improvement compared with the conven-
tional FFA Sp-AlN on flat sapphire and other AlN/NPSS 
templates fabricated by metal–organic vapor-phase epitaxy 
(MOVPE).27–29 To solve this problem, a comprehensive 
analysis investigating micro- and nanostructures caused by 
NPSS is required, including the morphology of dislocation 

propagation, presence of voids, shape of polarity inver-
sion boundaries, and crystal structure in the slope region 
of NPSS, which have not yet been elucidated in detail. This 
study used cross-sectional and plan-view transmission elec-
tron microscopy (TEM) to elucidate the unique structures of 
vapor-phase-grown AlN/FFA Sp-AlN/NPSS and provide a 
practical solution for dislocation reduction.

Experimental

Two sample types were used in this study. Figure 1a and 
d show the schematics of the sample structures showing 
MOVPE-grown AlN on an FFA Sp-AlN/hole-type (HT) 
NPSS (Sample MOH) and HVPE-grown AlN on an FFA 
Sp-AlN/cone-type (CT) NPSS (Sample HVC), respectively. 
In previous studies, four types of samples were prepared by 
combining two types of NPSS (hole- and cone-type) and 

Fig. 1  Schematics of (a) Sample MOH, (b) plan-view geometry of HT-NPSS, (c) cross section of HT-NPSS, (d) Sample HVC, (e) plan-view 
geometry of CT-NPSS, and (f) cross section of CT-NPSS.
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two types of vapor-phase growth methods (MOVPE and 
HVPE).21,22 Since relatively high-quality AlN was achieved 
in Samples MOH and HVC, this study focuses on these two 
samples to gain knowledge toward further improvement in 
the crystal quality. A fully comprehensive analysis of the 
samples prepared by MOVPE growth on CT-NPSS (i.e., 
MOC) and HVPE growth on HT-NPSS (i.e., HVH) is left for 
future work. As shown in Fig. 1b and c, the pattern period of 
HT-NPSS is 1000 nm, and the hole diameter and depth are 
600 nm each. Moreover, as shown in Fig. 1e and f, the pat-
tern period, cone diameter, and height of the CT-NPSS were 
1000 nm, 700 nm, and 440 nm, respectively. The structural 
design of the NPSS was based the reports from Zhang et al. 
for HT-NPSS (period/diameter/depth = 1000 nm/650 nm/2
20 nm)27 and Fujikura et al. for CT-NPSS (period/diameter/
height = 1000 nm/700 nm/440 nm).30 Zhang et al. revealed 
that the diameter was a dominant parameter influencing the 
crystallinity in MOVPE-grown AlN on CT-NPSS since the 
optimized diameter of 650 nm among 300 nm to 800 nm 
significantly promoted the bending of the threading dislo-
cations via the image force effect. On the other hand, Fuji-
kura et al. clarified that cone size reduction with a height of 
less than 440 nm is beneficial to diminish the misoriented 
HVPE-grown AlN on the slope region of NPSS. Both types 
of NPSS with a c-plane orientation had an cutoff angle of 
0.2° to the m-axis direction. The surfaces of both NPSS 

consist of flat and slope regions with different configura-
tions, as shown in Fig. 1c and f. We used commercial NPSS 
which were fabricated using nano-imprint lithography and 
etching technique.27 First, 180-nm-thick FFA Sp-AlN and 
5-µm-thick MOVPE AlN were formed in Sample MOH, 
while 200-nm thick FFA Sp-AlN and 9 ± 1-μm-thick HVPE 
AlN were formed in Sample HVC. FFA was performed for 
3 h in a nitrogen atmosphere at 1700°C for both samples. 
The MOVPE growth of Sample MOH was performed at 
1300°C, whereas the HVPE growth of Sample HVC was 
performed at 1550°C. The detailed fabrication procedure 
has been described elsewhere.21,22

TEM specimens for cross-sectional and plan-view 
observations were prepared using an FEI Versa 3D™ Dual-
Beam™ focused ion beam (FIB) system. These specimens 
were analyzed using a JEOL JEM-2100 and FEI Tecnai 
20 by bright- and dark-field (BF, DF) TEM observations 
combined with selected area electron diffraction (SAD) and 
energy-dispersive x-ray spectroscopy (EDS).

Results and Discussion

Figure  2 shows the cross-sectional BF-TEM images of 
the MOH and HVC samples. Both samples show an 
arrow-shaped micro-sized void structure (hereafter called 

Fig. 2  (a) Cross-sectional TEM image of Sample MOH taken along 
the AlN <1120> zone axis. (b) Magnified image of the rectangle area 
in (a). (c) Cross-sectional TEM image of Sample HVC taken along 
the AlN <1100> zone axis. (d) Magnified image of the rectangle area 
in (c). In (a) and (c), the white solid arrows and dotted framed areas 

indicate microvoids and grains on the slope region, respectively. As 
shown in (b) and (d), a waved inversion domain boundary (IDB) was 
observed in Sample MOH, while a flat IDB and numerous nanovoids 
(indicated by white dotted arrows) were observed in Sample HVC.
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“microvoid”) and the surrounding small grains, which are 
characteristic of AlN/NPSS, as observed in previous stud-
ies.21,22,29 As indicated by the white arrows in Fig. 2, micro-
voids exist directly above the NPSS cones or holes, and crys-
talline domains are observed, as highlighted by the dotted 
lines. These microvoids with crystalline domains result from 
the faster growth rates of vapor-phase epitaxy of the flat 
region than those of the slope regions.31

Figure 2b and d are magnified images of the white rec-
tangular regions in Fig. 2a and c, respectively, focusing on 
the flat region of the NPSS. Sample MOH shows wavy dark 
contrast lines, indicating an inversion domain boundary 
(IDB) (see Figs. S1 and S2 of the Supplementary Informa-
tion for IDB specification by the breakdown of Friedel’s 
 law32–35). In contrast, Sample HVC shows a linear IDB with 
randomly distributed hexagonal nano-sized voids (called 
“nanovoids”). It has been reported that similar linear IDBs 
and nanovoids were also formed in FFA Sp-AlN on a con-
ventional flat sapphire substrate,36 and neither the flat IDBs 
nor the nanovoids degraded the AlN film quality.37 However, 
the wavy and columnar IDBs in Sample MOH (see Fig. S3), 
which have not been observed in the conventional FFA Sp-
AlN, are supposed to induce inferior quality to the flat region 
and the AlN film grown on that region, compared to those 
in Sample HVC. The IDB in FFA Sp-AlN is possibly thin 
aluminum oxynitride or aluminum oxide formed via the oxy-
gen incorporation from the AlN sputtering target and sap-
phire substrate.36,38,39 Interestingly, universal IDB structures 
have been observed among FFA Sp-AlN, MOVPE-grown 
AlN, and molecular beam epitaxy-grown AlN on FFA Sp-
AlN.36–40 Hence, the marked difference in the IDB morphol-
ogy between Samples MOH and HVC suggests that the type 

of NPSS modifies how oxygen is supplied from the sapphire 
and incorporated in FFA Sp-AlN.

Figure 3a and b show the plan-view BF TEM images 
taken with g = 1120 for the regions 200–300  nm above 
the AlN/NPSS interfaces in the MOH and HVC samples, 
respectively. The white dashed circles indicate the locations 
of the NPSS cones and holes. Depending on the shape, dark-
contrast dislocations are categorized into two groups: dot-
like threading dislocations (red boxes) and line-like basal 
plane dislocations (yellow arrows). The threading disloca-
tion density (TDD) is measured to be 8.3 ×  108  cm−2 and 
4.7 ×  108  cm−2 for the MOH and HVC samples, respectively. 
The distribution of threading dislocations in the red boxes is 
observed to constitute small-angle grain boundaries,41 which 
is likely attributed to the accumulation of dislocations at the 
boundaries of the slope regions and crystal domains during 
the solid-phase reaction in FFA.17 Meanwhile, only a few 
threading dislocations and no basal-plane dislocations are 
observed in the HVC sample, indicating a higher crystal-
linity than that of the MOH sample (see Fig. S4 for a more 
highlighted contrast of the basal plane dislocations observed 
by annular DF scanning TEM). The observed remarkable 
difference in the defect distribution between the two samples 
probably originates from the crystal quality of the flat region 
and the crystalline domain structure in the slope region (dot-
ted framed areas in Fig. 2a and c).

We analyzed their crystal structures to investigate the 
effect of domains in the slope region on the crystal quality 
in more detail. Figure 4a and c show the cross-sectional and 
plan-view BF TEM images of Sample MOH taken along the 
AlN <1120> and <0001> zone axes. These two figures show 
two symmetric domains on either side of the microvoid and 

Fig. 3  Plan-view bright-field TEM images of Samples (a) MOH and 
(b) HVC under a two-beam condition with g = 1120 . In (a) and (b), 
the red rectangles and orange arrows indicate arrayed dislocations 

and basal dislocations, respectively, and the dashed yellow circles 
indicate the locations of the NPSS pattern.
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petal-shaped multiple domains surrounding the microvoid, 
respectively. We counted the number of domains for doz-
ens of locations and found that it was either eight or nine. 
This result suggests that multiple domains are epitaxially 
oriented on the r- and n- planes of sapphire, as observed 
in HVPE-grown AlN on PSS.42 Figure 4b and d show the 
corresponding SAD patterns obtained at the circled posi-
tions in Fig. 4a and c, exhibiting parallelogram and hex-
agonal patterns, respectively. From these SAD patterns, we 
infer that the most likely material composing the domain 
is spinel-type γ-AlON, as previously reported for an AlN/

sapphire system.43,44 The simulation using  Recipro45 suc-
cessfully validated this inference: the lattice spacing for 440 , 
222 , and 220 in the SAD pattern of Fig. 4b corresponding 
to 1.57 Å, 2.40 Å, and 2.74 Å is consistent with the simu-
lated values of 1.41 Å, 2.29 Å, and 2.81 Å, respectively, 
for γ-AlON45 (see Fig. S6). The discrepancy between the 
experimental and simulated values could stem from the 
nonstoichiometric features of AlON with fluctuating lat-
tice constants.46 In plan-view SAD, the direction along 
which the satellite spots appear corresponds to the direction 
from the slope region to the void, which is attributed to the 

Fig. 4  (a) Cross-sectional TEM image of Sample MOH taken along 
the AlN <1120> zone axis. (b) SAD pattern from the circled area 
in (a). (c) Plan-view TEM image of Sample MOH taken along the 
AlN <0001> zone axis. (d) SAD pattern from the circled area in (c). 
(e) EDS spectra at the two cross-marked points in (c). The strong car-

bon peak is due to the residue of the protection film used in the FIB 
etching process. (f) TEM image at the AlN/γ-AlON interface of Sam-
ple MOH. (g) High-resolution TEM image in the rectangle shown in 
(f). (h) Fourier-filtered image of (g).
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multiple-electron diffraction for the wedge-shaped γ-AlON 
sandwiched between the upper AlN and lower sapphire.

As shown in Fig. 4e, EDS analysis also validated the 
existence of AlON, where a distinct oxygen peak was 
detected in the petal-shaped domain and not in AlN. Oxygen 
atoms can be supplied from the sapphire substrate during 
the FFA and MOVPE growth. Fukuyama et al. reported that 
γ-AlON is formed via a solid-state reaction between AlN and 
sapphire during annealing at 1700°C under a  N2 atmosphere, 
which is the same condition as that used for FFA.43 There-
fore, in the MOH sample, γ-AlON is possibly formed in the 
slope region during FFA. In addition, fast diffusion through 
dislocation cores has been reported as a diffusion route for 
oxygen.47 Thus, oxygen could sufficiently diffuse from the 
sapphire substrate to form γ-AlON during MOVPE growth.

The experimentally observed epitaxial relationship of 
[ 1100]AlN//[110 ] AlON agrees with the previous studies on 
the AlN/sapphire system.43,44 Figure 4f, g, and h show the 
results of cross-sectional high-resolution TEM observations 
at the AlN/γ-AlON interface. Figure 4g is the high-resolu-
tion image taken at the rectangle area in Fig. 4f. As shown in 
Fig. 4h, the Fourier filtering in Fig. 4g reveals that the mis-
fit dislocation indicated by the white arrows is periodically 
introduced at the AlN/γ-AlON interface, which could be the 
source of threading and basal plane dislocations.

Next, we examined Sample HVC, focusing on the crys-
talline domain near the microvoid, as shown in Fig. 5. The 
cross-sectional TEM image shows two separated microvoids 

vertically present on the cone pattern of NPSS, while the 
plan-view TEM image shows a petal-shaped structure with 
a filled core and six domains. Xiao et al. reported that the 
upper void was formed owing to the growth mode differ-
ence between the cone and flat regions, whereas the lower 
void was formed via the decomposition of the cone tip at a 
high growth temperature of 1550°C.22 For the crystalline 
domains on the slope regions, we performed SAD analysis 
and obtained no patterns, suggesting the existence of AlON. 
Instead, the domains consisted of AlN from the SAD pat-
terns obtained with the zone axes of AlN <1121> and <1451
> shown in Fig. 5b and c for the left and right domains, 
respectively. The plan-view SAD patterns shown in Fig. 5e 
and f are identified as those with an AlN <1341> zone axis 
for both diagonal domains. Since the crystal orientations 
between the cross-sectional and plan-view directions are 
not correlated (see Table SI), the AlN domains in the slope 
region are composed of highly misaligned small grains and 
have a weak epitaxial relationship with the surrounding 
AlN and sapphire. In addition, cross-sectional TEM images 
around the slope region reveal that threading dislocations 
originated from these misaligned AlN domains (Fig. S8). 
The nonuniformity of domains is a characteristic of Sample 
HVC in the shape and size fluctuation of the domain–micro-
void system compared with those of Sample MOH.

One reason for this difference is the vapor-phase growth 
condition. Sample HVC employed HVPE growth as the 
vapor-phase growth method, and it was reported that the 

Fig. 5  (a) Cross-sectional TEM image of Sample HVC taken along 
the AlN{1100 } zone axis. SAD patterns from the (b) circled area and 
(c) dotted circled area in (a). (d) Plan-view TEM image of Sample 

HVC taken along the AlN{0001 } zone axis. (e) SAD pattern from 
the circled area in (d). SAD patterns from the (e) circled area and (f) 
dashed circled area in (d).
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tip of the cone-shaped pattern of NPSS decomposed owing 
to high-temperature growth at 1550°C.22 The formation 
of microvoids in the lower part can be explained by the 
decomposition of sapphire caused by the reaction with the 
carrier gas  H2 during AlN growth.48–50 Table I summarizes 
the occurrence of sapphire decomposition in the AlN/sap-
phire templates under various conditions, including the 
results of previous studies. The occurrence of sapphire 
decomposition was markedly divided between 1400°C and 
1450°C.  H2 was also used during MOVPE growth to fab-
ricate the MOH sample, but the growth temperature was 
1300°C. This temperature is probably too low for hydrogen 
to react with sapphire and cause decomposition. Therefore, 
the temperature of the vapor-phase growth is a critical 
parameter, which has a significant impact on controlling 
the crystal structure in the slope region. Meanwhile, the 
effect of the NPSS pattern shape on the crystal structure in 
the slope region is considered relatively small compared 
with the process temperature, but further investigation is 
needed to reduce the dislocation density.

Conclusion

This study analyzed micro- and nanostructures in vapor-
phase-grown AlN on FFA Sp-AlN using NPSS. TEM 
was employed to study the two samples. The observa-
tion results for the MOH and HVC samples in the pre-
sent study are summarized in Table II and Fig. 6. Sample 
HVC exhibited a lower TDD of 4.7 ×  108  cm−2 compared 
to Sample MOH, showing a TDD of 8.3 ×  108  cm−2 with 
basal plane dislocations. This difference in crystallinity 
could originate from the crystal quality of FFA Sp-AlN 
and the crystalline domains in the slope region. The flat 
IDB and the presence of nanovoids in the HVC sample are 
identical to those of the conventional FFA Sp-AlN on the 
flat sapphire. Conversely, the wavy IDB of Sample MOH 
has never been observed in conventional FFA Sp-AlN. 
The crystalline domain observed in the slope region was 
γ-AlON for the MOH sample and misaligned AlN grains 
in the HVC sample. We observed that γ-AlON with an epi-
taxial orientation of [ 1100]AlN//[110 ] AlON formed misfit 
dislocations at the interface, which could be converted to 
dense threading dislocations. Furthermore, the highly mis-
aligned AlN grains had a weak epitaxial orientation with 
the surrounding c-axis-oriented AlN and sapphire.

Based on the results of this study, it is critical to fabri-
cate FFA Sp-AlN on a flat region and a conventional sap-
phire substrate. Moreover, the suppression of the forma-
tion of singular structures on the slope region is also found 
to be crucial to further reduce the dislocation density. The 
optimal sputtering and annealing conditions for FFA Sp-
AlN on flat sapphire have been updated,51,52 which will 
realize high-quality FFA Sp-AlN on the flat areas of NPSS. 
The condition of vapor-phase growth can control the crys-
talline domain formed at the slope region and the shape 
of the microvoid, which is critical for sufficiently reduc-
ing the threading dislocations by avoiding misfit disloca-
tions and enhancing annihilation. Thus, the comprehensive 
observation of the micro- and nanostructures performed in 
this study is beneficial for reducing threading dislocations 

Table I  Comparison with previous studies on sapphire decomposition 
in the presence of  H2

“Thickness of AlN film” in the table means the thickness of AlN film 
on sapphire substrates before heat treatment or vapor-phase growth

Thickness of 
AlN film (nm)

Tempera-
ture (°C)

Occurrence of 
sapphire decompo-
sition

Author references

180 1300 No occurrence This study (Sample 
MOH)

90 1320 No occurrence Tajima et al.49

200 1400 No occurrence Xiao et al.22

50–200 1450 Occurrence Kumagai et al.50

200 1550 Occurrence This study (Sample 
HVC)

Table II  Comparison table 
between Sample MOH and 
Sample HVC

Sample MOH Sample HVC

NPSS pattern Hole type Cone type
Growth method MOVPE HVPE
IDB morphology in the FFA Sp-AlN layer Waved Flat
TDD in the flat region 8.3 ×  108  cm−2 4.7 ×  108  cm−2

Basal plane dislocation Present Absent
Crystal structure at the slope region γ-AlON Misaligned AlN grains
Epitaxial orientation at the slope region [1100]AlN//[110 ] AlON None

Shape uniformity at the slope region Uniform Nonuniform
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in vapor-phase-grown AlN and AlGaN on FFA Sp-AlN/
NPSS for high-performance DUV LEDs.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11664- 023- 10348-3.
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