Skip to main content
Log in

Electrodeposition and Characterisation of Zn-Co Alloys from Ionic Liquids on Copper

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electrodeposition of metals and alloys from aqueous solutions has been extensively studied in the literature. Recently, ionic liquids having only anions and cations (without solvent) have been used as electrodeposition baths of metals and alloys. Growth conditions may significantly affect the surface characteristics of coatings. In this study, Zn metal, Co metal and Zn-Co alloy-based electrodes were prepared on copper surfaces from ionic liquids solution consisting of stoichiometric 1:2 mixtures of choline chloride and ethylene glycol (Ethaline). The growth potentials of Zn (zinc), Co (cobalt) and Zn-Co (zinc-cobalt alloy) electrodes were analysed by cyclic voltammograms. Zn, Co and Zn-Co were electrodeposited independently on copper substrates using constant voltages and ionic liquid electrolytes containing the salt forms of these metals. The surface morphologies, compositions and structures of the synthesized coatings were investigated by scanning electron microscope, Fourier Transform Infrared spectrophotometer, X-ray Photoelectron Spectroscopy, Energy-Dispersive X-ray Spectroscopy and X-ray Diffractometer. The coatings made of cobalt and zinc contained nanoflakes and hexagonal nano-layers, respectively. The smooth copper surfaces were evenly coated by these nanostructured thin film coatings. The nano and micro sized Co-Zn alloy particles electrodeposited from ionic liquid were observed to be agglomerated. The corrosion behaviour of Zn, Co and Zn-Co alloys was measured in 3.5% NaCl environment, using the Tafel method. The electrodeposition of the Zn-Co alloy resulted in higher corrosion resistances. While the Icorr (corrosion current) value of bare copper electrode was 40.7 μA cm−2, the Icorr value ​​of Zn-Co electrochemically coated on copper was determined as 1.26 μA cm−2. These findings indicated that the corrosion resistivity of the Co-Zn alloy coating was more than 30 times greater than that of uncoated copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Lei, W. Xiao, H. Peng, P. Yu, X. Cai, Z. Luan, S. Deng, and S. Wang, J. Alloys Compd. 853, 157005 (2021).

    Article  CAS  Google Scholar 

  2. E.E. Ikechukwu and E.O. Pauline, Open J. Soc. Sci. 3, 143 (2015).

    Google Scholar 

  3. D. Tolentino and C.A. Carrillo-Bueno, KSCE J. Civ. Eng.. 22, 1344 (2018).

    Article  Google Scholar 

  4. X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, and C. Dong, Nat. News 527, 441 (2015).

    Article  CAS  Google Scholar 

  5. Y. Zeng, Z. Qin, Q. Hua, Y. Min, and Q. Xu, Surf. Coatings Technol. 362, 62 (2019).

    Article  CAS  Google Scholar 

  6. N.H. Othman, M.C. Ismail, M. Mustapha, N. Sallih, K.E. Kee, and R.A. Jaal, Prog. Org. Coatings 135, 82 (2019).

    Article  CAS  Google Scholar 

  7. M. Taghavikish, N. K. Dutta, and N. Roy Choudhury, Coatings 7, 217 (2017).

  8. W. Zhan, Q. He, X. Liu, Y. Guo, Y. Wang, L. Wang, Y. Guo, A.Y. Borisevich, J. Zhang, and G. Lu, J. Am. Chem. Soc. 138, 16130 (2016).

    Article  CAS  Google Scholar 

  9. Y.J. Cho, H. Jang, K.-S. Lee, and D.R. Kim, Appl. Surf. Sci. 340, 96 (2015).

    Article  CAS  Google Scholar 

  10. J. Li, P. Zhang, H. He, and B. Shi, Mater. Des. 187, 108373 (2020).

    Article  CAS  Google Scholar 

  11. H. Tian, Z. Guo, J. Pan, D. Zhu, C. Yang, Y. Xue, S. Li, and D. Wang, Resour. Conserv. Recycl. 168, 105366 (2021).

    Article  CAS  Google Scholar 

  12. N. Aslan, B. Ceylan, M.M. Koç, and F. Findik, J. Mol. Struct. 1219, 128599 (2020).

    Article  CAS  Google Scholar 

  13. J. Zhang and H. Li, Int. J. Electrochem. Sci. 15, 4368 (2020)

  14. D. Ji, X. Wen, T. Foller, Y. You, F. Wang, and R. Joshi, Nanomaterials 10, 2511 (2020).

    Article  CAS  Google Scholar 

  15. S. Singh, P. Singh, H. Singh, and R.K. Buddu, Mater. Today Proc. 18, 830 (2019).

    Article  CAS  Google Scholar 

  16. J. Balaji, T.H. Oh, and M.G. Sethuraman, J. Taiwan Inst. Chem. Eng. 119, 259 (2021).

    Article  CAS  Google Scholar 

  17. T. Ge, W. Zhao, X. Wu, Y. Wu, L. Shen, X. Ci, and Y. He, Mater. Des. 186, 108299 (2020).

    Article  CAS  Google Scholar 

  18. H. Huang and X. Guo, Colloids Surfaces A Physicochem. Eng. Asp. 598, 124809 (2020)

  19. G. He, S. Lu, W. Xu, S. Szunerits, R. Boukherroub, and H. Zhang, Phys. Chem. Chem. Phys. 17, 10871 (2015).

    Article  CAS  Google Scholar 

  20. Z. Liu, S.Z. El Abedin, and F. Endres, Electrochim. Acta 89, 635 (2013).

    Article  CAS  Google Scholar 

  21. R.M. Krishnan, S.R. Natarajan, V.S. Muralidharan, and G. Singh, Plat. Surf. Finish. 79, 67 (1992).

    CAS  Google Scholar 

  22. P.P. Chung, P.A. Cantwell, G.D. Wilcox, and G.W. Critchlow, Trans. IMF 86, 211 (2008).

    Article  CAS  Google Scholar 

  23. A.Y.M. Al-Murshedi, A. Al-Yasari, H.F. Alesary, and H.K. Ismail, Chem. Pap. 74, 699 (2020).

    Article  CAS  Google Scholar 

  24. D.H. Zaitsau, G.J. Kabo, A.A. Strechan, Y.U. Paulechka, A. Tschersich, S.P. Verevkin, and A. Heintz, J. Phys. Chem. A 110, 7303 (2006)

    Article  CAS  Google Scholar 

  25. F. Wu, N. Zhu, Y. Bai, L. Liu, H. Zhou, and C. Wu, ACS Appl. Mater. Interfaces 8, 21381 (2016).

    Article  CAS  Google Scholar 

  26. T. Boiadjieva, M. Monev, A. Tomandl, H. Kronberger, and G. Fafilek, J. Solid State Electrochem. 13, 671 (2009).

    Article  CAS  Google Scholar 

  27. A. Yavuz, N. Ozdemir, P.Y. Erdogan, H. Zengin, G. Zengin, and M. Bedir, Thin Solid Films 711, 138309 (2020).

    Article  CAS  Google Scholar 

  28. S.I. Abu-Eishah, Ion. Liq. Prop. 239 (2011).

  29. K.K. Maniam and S. Paul, Appl. Sci. 10, 5321 (2020).

    Article  CAS  Google Scholar 

  30. L. Tahraoui, M. Diafi, and A. Fadel, Dig. J. Nanomater. Biostructures 16, (2021).

  31. S. Arora and C. Srivastava, Metall. Mater. Trans. A 51, 4274 (2020).

    Article  CAS  Google Scholar 

  32. S. Basavanna and Y.A. Naik, (2012).

  33. T. Nguyen, M. Boudard, M.J. Carmezim, and M.F. Montemor, Sci. Rep. 7, 39980 (2017).

    Article  CAS  Google Scholar 

  34. X. Qin, D. Shi, B. Guo, C. Fu, J. Zhang, Q. Xie, X. Shi, F. Chen, X. Qin, and W. Yu, Nanoscale Res. Lett. 15, 1 (2020).

    Article  Google Scholar 

  35. M. Diafi, T. Louiza and K. Digheche, Acta Metall. Slovaca 24, 241 (2018).

    Article  Google Scholar 

  36. F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, and X. Zhang, J. Power Sources 203, 250 (2012).

    Article  CAS  Google Scholar 

  37. B.V.A. Rao and M.N. Reddy, Arab. J. Chem. 10, S3270 (2017).

    Article  Google Scholar 

  38. K.M. Pondman, A.W. Maijenburg, F.B. Celikkol, A.A. Pathan, U. Kishore, B. Ten Haken, and E. ten Johan, J. Mater. Chem. B 1, 6129 (2013).

    Article  CAS  Google Scholar 

  39. K. Vinothkumar and M.G. Sethuraman, Polym. Bull. 78, 15 (2021).

    Article  CAS  Google Scholar 

  40. B. Han, Q. Yan, Z. Xin, Q. Liu, D. Li, J. Wang, and G. He, New J. Chem. 45, 13262 (2021).

    Article  CAS  Google Scholar 

  41. M. Verma, L. Sinha, and P.M. Shirage, J. Mater. Sci. Mater. Electron. 32, 12292 (2021).

    Article  CAS  Google Scholar 

  42. Q. Qian, F. Wang, X. Zhang, and Q. Zhao, Inorg. Chem. Commun. 127, 108555 (2021).

    Article  CAS  Google Scholar 

  43. D. Xu, D. Fan, and W.Shen, Nanoscale Res. Lett. 8, 1 (2013).

    Article  Google Scholar 

  44. D.V. Ponnuvelu, S. Abdulla, and B. Pullithadathil, ChemistrySelect 3, 7156 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PYE thanks the Council of Higher Education (YOK) in Turkey for 100/2000 PhD scholarship. This work was supported by Gaziantep University, BAP (FEF.DT.19.40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulcabbar Yavuz.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, A., Yilmaz Erdogan, P., Zengin, H. et al. Electrodeposition and Characterisation of Zn-Co Alloys from Ionic Liquids on Copper. J. Electron. Mater. 51, 5253–5261 (2022). https://doi.org/10.1007/s11664-022-09756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09756-8

Keywords

Navigation