Skip to main content
Log in

Reduction Behavior of Surface Oxide on Submicron Copper Particles for Pressureless Sintering Under Reducing Atmosphere

  • Brief Communication
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The reduction behavior of the surface oxide on Cu particles under a reducing gas atmosphere was investigated for a pressureless sinter joining. We conducted x-ray thermodiffraction analysis and simultaneous thermogravimetry, differential thermal analysis, and mass spectroscopy (TG–DTA–MS) under a reducing atmosphere to investigate the reduction and subsequent sintering behaviors of copper particles at different oxygen concentrations. The shear strength of the pressureless sinter joint decreased with increasing oxygen concentration. The thermodiffraction results revealed that the reduction onset of Cu2O started at the same temperature (220°C), whereas the reaction markedly persisted at higher oxygen concentrations. Cu sintering progressed significantly after the reduction due to generation of Cu nanoparticles. The TG–DTA–MS results indicated that H2O formation temperature associated with the reduction depends on the oxygen concentration, consistent with the thermodiffraction results. The surface oxides were found to play an important role in pressureless sinter joining via nanoparticle formation, while the presence of a large amount of oxide delayed the reduction and subsequent sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J.G. Bai, J. Yin, Z. Zhang, G.Q. Lu, and J.D. Wyk, High-temperature operation of SiC power devices by low-temperature sintered silver die-attachment. IEEE Trans. Adv. Packag. 30, 506 (2007).

    Article  CAS  Google Scholar 

  2. T. Youssef, W. Rmili, E. Woirgard, S. Azzopardi, N. Vivet, D. Martineau, R. Meuret, G. Le Quilliec, and C. Richard, Power modules die attach: a comprehensive evolution of the nanosilver sintering physical properties versus its porosity. Microelectron. Relib. 55, 1997 (2015).

    Article  CAS  Google Scholar 

  3. S.A. Paknejad, and S.H. Mannan, Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Relib. 70, 1 (2017).

    Article  CAS  Google Scholar 

  4. H. Zhang, C. Chen, J. Jiu, S. Nagao, and K. Suganuma, High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device. J. Mater. Sci.: Mater. Electron. 29, 8854 (2018).

    CAS  Google Scholar 

  5. A.N. Goldstein, C.M. Echer, and A.P. Alivisatos, Melting in semiconductor nanocrystals. Science 256, 1425 (1992).

    Article  CAS  Google Scholar 

  6. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, and L.H. Allen, Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99 (1996).

    Article  CAS  Google Scholar 

  7. K.J. Klabunde, J. Stark, O. Koper, C. Mohs, D.G. Park, S. Decker, Y. Jiang, I. Lagadic, and D. Zhang, Nanocrystals as stoichiometric reagents with unique surface chemistry. J. Phys. Chem. 100, 12142 (1996).

    Article  CAS  Google Scholar 

  8. P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, and Y.N. Zhou, Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl. Mater. Interfaces 7, 12597 (2015).

    Article  CAS  Google Scholar 

  9. A. Hirose, H. Tatsumi, N. Takeda, Y. Akada, T. Ogura, E. Ide, and T. Morita, A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles. J. Phys. Conf. Ser. 165, 012074 (2009).

    Article  Google Scholar 

  10. T. Yao, T. Matsuda, T. Sano, C. Morikawa, A. Ohbuchi, H. Yashiro, and A. Hirose, In-situ study of reduction process of CuO paste and its effect on bondability of Cu-to-Cu joints. J. Electron. Mater. 47, 2193 (2018).

    Article  CAS  Google Scholar 

  11. F. Paglia, D. Vak, J. van Embden, A.S.R. Chesman, A. Martucci, J.J. Jasieniak, and E.D. Gaspera, Photonic sintering of copper through the controlled reduction of printed CuO nanocrystals. ACS Appl. Mater. Int. 7, 25473 (2015).

    Article  CAS  Google Scholar 

  12. Y. Zuo, S. Carter-Searjeant, M. Green, L. Mills, and S.H. Mannan, Low temperature Cu joining by in situ reduction-sintering of CuO nanoparticle for high power electronics. Adv. Powder Technol. 31, 4135 (2020).

    Article  CAS  Google Scholar 

  13. S. Hausner, P. Frenzel, J. Noll, G. Wagner, and H. Lang, Joining of copper at low temperatures using silver(I) carboxylates. Weld. World 62, 1215 (2018).

    Article  CAS  Google Scholar 

  14. L. Tang, G. Gan, X. Yu, C. Liu, and J. Cheng, Study on the mechanism of forming silver nanoparticles on micronscale flake silver powder. Mater. Res. Exp. 7, 105001 (2020).

    Article  CAS  Google Scholar 

  15. K. Asama, T. Matsuda, T. Ogura, T. Sano, M. Takahashi, and A. Hirose, Low-temperature metal-to-alumina direct bonding process utilizing redox reaction between silver oxide and organic agent. Mater. Sci. Eng. A 702, 398 (2017).

    Article  CAS  Google Scholar 

  16. T. Matsuda, K. Inami, K. Motoyama, T. Sano, and A. Hirose, Silver oxide decomposition mediated direct bonding of silicon-based materials. Sci. Rep. 8, 10472 (2018).

    Article  Google Scholar 

  17. K. Motoyama, T. Matsuda, T. Sano, and A. Hirose, AlN-to-metal direct bonding process utilizing sintering of Ag nanoparticles derived from the reduction of Ag2O. J. Electron. Mater. 47, 5780 (2018).

    Article  CAS  Google Scholar 

  18. T. Matsuda, S. Yamada, A. Takeuchi, K. Uesugi, M. Yasutake, T. Sano, M. Ohata, and A. Hirose, Fracture behavior of thermally aged Ag–Cu composite sinter joint through microscale tensile test coupled with nano X-ray computed tomography. Mater. Des. 206, 109818 (2021).

    Article  CAS  Google Scholar 

  19. H. Zhang, Y. Gao, J. Jiu, and K. Suganuma, In situ bridging effect of Ag2O on pressureless and low-temperature sintering of micron-scale silver paste. J. Alloy. Compd. 696, 123 (2017).

    Article  CAS  Google Scholar 

  20. C. Chen, and K. Suganuma, Large-scale ceramic–metal joining by nano-grained Ag particles paste sintering in low-temperature pressure-less conditions. Scr. Mater. 195, 113747 (2021).

    Article  CAS  Google Scholar 

  21. T.F. Chen, and K.S. Siow, Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints. J. Alloy Compd. 866, 158783 (2021).

    Article  CAS  Google Scholar 

  22. J. Kwon, H. Cho, Y.D. Suh, J. Lee, H. Lee, J. Jug, D. Kim, D. Lee, S. Hong, and S.H. Ko, Flexible and transparent Cu electronics by low-temperature acid-assisted laser processing of Cu nanoparticles. Adv. Mater. Technol. 2, 1600222 (2017).

    Article  Google Scholar 

  23. M. Kanzaki, Y. Kawaguchi, and H. Kawasaki, Fabrication of conductive copper films on flexible polymer substrates by low-temperature sintering of composite Cu ink in air. ACS Appl. Mater. Interfaces 9, 20852 (2017).

    Article  CAS  Google Scholar 

  24. R. Gao, S. He, Y.-A. Shen, and H. Nishikawa, Effect of substrates on fracture mechanism and process optimization of oxidation-reduction bonding with copper microparticles. J. Electron. Mater. 48, 2263 (2019).

    Article  CAS  Google Scholar 

  25. R. Gao, S. He, J. Li, Y.-A. Shen, and H. Nishikawa, Interfacial transformation of preoxidized Cu microparticles in a formic-acid atmosphere for pressureless Cu-Cu bonding. J. Mater.: Sci. Mater. Electron. 31, 14635 (2020).

    CAS  Google Scholar 

  26. T. Yonezawa, H. Tsukamoto, and M. Matsubara, Low-temperature nanoredox two-step sintering of gelatin nanoskin-stabilized submicrometer-sized copper fine particles for preparing highly conductive layers. RSC Adv. 5, 61290 (2015).

    Article  CAS  Google Scholar 

  27. J.Y. Kim, J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, and P.L. Lee, Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125, 10684 (2003).

    Article  CAS  Google Scholar 

  28. R. Kawai, H. Yukawa, A. Suzuki, T. Nambu, and Y. Murata, Alloying effects of Fe and Al on formation and decomposition temperatures of vanadium hydride, V2H. Int. J. Hydro. Energy 42, 22564 (2017).

    Article  CAS  Google Scholar 

  29. X. Liu, and H. Nishikawa, Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging. Scr. Mater. 120, 80 (2016).

    Article  CAS  Google Scholar 

  30. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall 2001).

  31. A. LaGrow, M. Ward, D. Lloyd, P. Gai, and E.D. Boyes, Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139, 179 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Matsuda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, T., Yamagiwa, D., Furusawa, H. et al. Reduction Behavior of Surface Oxide on Submicron Copper Particles for Pressureless Sintering Under Reducing Atmosphere. J. Electron. Mater. 51, 1–7 (2022). https://doi.org/10.1007/s11664-021-09274-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09274-z

Keywords

Navigation