Skip to main content
Log in

The Pivotal Role of Thermal Annealing of Cadmium Telluride Thin Film in Optimizing the Performance of CdTe/Si Solar Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The main focus of this framework is the preparation of CdTe nanocrystalline thin films (~120 nm) on single crystal p-Si wafers (270 μm) with Miller index (100) using thermal evaporation. Then, the In/n-CdTe/p-Si/Al solar cell was successfully fabricated. The dark I–V characteristics for the fabricated solar cell have been determined in range of 300–375 K and an applied voltage range of − 2 to 2 V. The fabricated solar cell's behavior was thoroughly explained. As a result, the important parameters for the fabricated solar cell such as the rectification ratio \({\text{RR}}\), the junction resistance \(R_{{\text{J}}}\), ideality factor of solar cell n, the shunt resistance \(R_{{{\text{sh}}}}\), the series resistance \(R_{{\text{s}}}\), the barrier height created at the interface between the CdTe thin film and the p-Si wafer \(\phi_{b}\), the energy of trap level \(E_{{\text{t}}}\) and the activation energy of carriers’s recombination in the depletion region \(\Delta E\) were determined. Finally, the Poole–Frenkel \(\beta_{{{\text{PF}}}}\) and Schottky \(\beta_{{\text{S}}}\) parameters were computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

References

  1. T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, G. Schileo, K.B. Mustapha, and R. Greenough, Renew. Sust. Energ. Rev. 80, 1321 (2017).

    Article  CAS  Google Scholar 

  2. Y. Da, Y. Xuan, and Q. Li, Energy 95, 200 (2016).

    Article  Google Scholar 

  3. S. Luthra, S. Kumar, D. Garg, and A. Haleem, Renew. Sust. Energ. Rev. 41, 762 (2015).

    Article  Google Scholar 

  4. M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A.A. Malek, and A. Nahar, Renew. Sust. Energ. Rev. 41, 284 (2015).

    Article  Google Scholar 

  5. V.V. Tyagi, N.A. Rahim, N.A. Rahim, A. Jeyraj, and L. Selvaraj, Renew. Sust. Energ. Rev. 20, 443 (2013).

    Article  CAS  Google Scholar 

  6. S. Kumar, Girish, and KSR Koteswara RaoEnergy Environ. Sci. 7, 45 (2014).

    Article  CAS  Google Scholar 

  7. S.R. Bera, and S. Saha, Appl. Nanosci. 6, 1037 (2016).

    Article  CAS  Google Scholar 

  8. S. Rühle, Sol. Energy. 130, 139 (2016).

    Article  Google Scholar 

  9. T.M. Bruton, Sol. Energy Mater. Sol. Cells. 72, 3 (2002).

    Article  CAS  Google Scholar 

  10. V.V. Brus, P.D. Maryanchuk, M.I. Ilashchuk, J. Rappich, I.S. Babichuk, and Z.D. Kovalyuk, Sol. Energy. 112, 78 (2015).

    Article  CAS  Google Scholar 

  11. P. Von Huth, J.E. Butler, W. Jaegermann, and R. Tenne, J. Electrochem. Soc. 149, G55 (2001).

    Article  CAS  Google Scholar 

  12. R.M. Geisthardt, M. Topič, and J.R. Sites, IEEE J. Photovolt. 5, 1217 (2015).

    Article  Google Scholar 

  13. W.A. Pinheiro, V.D. Falcão, L.R.D.O. Cruz, and C.L. Ferreira, Mater. Res. 9, 47 (2006).

    Article  CAS  Google Scholar 

  14. M.F. Rahman, J. Hossain, A. Kuddus, S. Tabassum, M.H. Rubel, M.M. Rahman, and A.B.M. Ismail, J. Mater. Sci. 55, 7715 (2020).

    Article  CAS  Google Scholar 

  15. T. Sinha, D. Lilhare, and A. Khare, J. Mater. Sci. 54, 12189 (2019).

    Article  CAS  Google Scholar 

  16. X. Wu, Sol. Energy. 77, 803 (2004).

    Article  CAS  Google Scholar 

  17. Z. Fang, X.C. Wang, H.C. Wu, and C.Z. Zhao, Int. J. Photoenergy. 2011, 1 (2011).

    Article  Google Scholar 

  18. D. Metzler, C. Li, C.S. Lai, E.A. Hudson, and G.S. Oehrlein, J. Phys. D: Appl. Phys. 50, 254006 (2017).

    Article  CAS  Google Scholar 

  19. A. Segura, J.P. Guesdon, J.M. Besson, and A. Chevy, J. Appl. Phys. 54, 876 (1983).

    Article  CAS  Google Scholar 

  20. D.-M. Smilgies, J. Appl. Crystallogr. 42, 1030 (2009).

    Article  CAS  Google Scholar 

  21. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, and A. Qasem, Appl. Phys. A. 126, 1 (2020).

    Article  CAS  Google Scholar 

  22. A.F.A.L. Naim, A.H. Farha, A. Qasem, and E.R. Shaaban, J. Mater. Sci. Mater. Electron. 32, 6866 (2021).

    Article  CAS  Google Scholar 

  23. M.R. Balboul, A. Abdel-Galil, I.S. Yahia, and A. Sharaf, Adv. Mater. Sci. Eng. 2016, 1 (2016).

    Article  CAS  Google Scholar 

  24. Y. Natsume, and H. Sakata, Mater. Chem. Phys. 78, 170 (2003).

    Article  Google Scholar 

  25. M.H. Cohen, H. Fritzsche, and S.R. Ovshinsky, Phys. Rev. Lett. 22, 1065 (1969).

    Article  CAS  Google Scholar 

  26. R.T. Tung, Phys. Rev. Lett. 84, 6078 (2000).

    Article  CAS  Google Scholar 

  27. A.S. Hassanien, and I. Sharma, J. Alloys Compd. 798, 750 (2019).

    Article  CAS  Google Scholar 

  28. M. Askari, N. Soltani, E. Saion, W.M.M. Yunus, H.M. Erfani, and M. Dorostkar, Superlattices Microstruct. 81, 193 (2015).

    Article  CAS  Google Scholar 

  29. R. Xie, J. Su, Y. Liu, and L. Guo, Int. J. Hydrog. Energy. 39, 3517 (2014).

    Article  CAS  Google Scholar 

  30. C. Xing, Y. Zhang, W. Yan, and L. Guo, Int. J. Hydrog. Energy. 31, 2018 (2006).

    Article  CAS  Google Scholar 

  31. W. Chaibi, R.J. Peláez, C. Blondel, C. Drag, and C. Delsart, Eur. Phys. J. D. 58, 29 (2010).

    Article  CAS  Google Scholar 

  32. G. Haeffler, A.E. Klinkmüller, J. Rangell, U. Berzinsh, and D. Hanstorp, Z. Phys. D. 38, 211 (1996).

    Article  CAS  Google Scholar 

  33. S.G. Bratsch, and J.J. Lagowski, Polyhedron 5, 1763 (1986).

    Article  CAS  Google Scholar 

  34. A.S. Hassanien, and A.A. Akl, Superlattices Microstruct. 89, 153 (2016).

    Article  CAS  Google Scholar 

  35. H. Uslu, A. Bengi, S.Ş Çetin, U.M.U.T. Aydemir, Ş Altındal, S.T. Aghaliyeva, and S. Özçelik, J. Alloys Compd. 507, 190 (2010).

    Article  CAS  Google Scholar 

  36. İ Taşçıoğlu, U. Aydemir, Ş Altındal, B. Kınacı, and S. Özçelik, J. Appl. Phys. 109, 054502 (2011).

    Article  CAS  Google Scholar 

  37. D. Gacio, J.M. Alonso, J. Garcia, M.S. Perdigao, E.S. Saraiva, and F.E. Bisogno, IEEE Trans. Ind. 49, 750 (2013).

    Article  Google Scholar 

  38. H. Matsuura, and H. Okushi, J. Appl. Phys. 62, 2871 (1987).

    Article  CAS  Google Scholar 

  39. Y.M. Reddy, M.K. Nagaraj, M.S.P. Reddy, J.H. Lee, and V.R. Reddy, Braz. J. Phys. 43, 13 (2013).

    Article  CAS  Google Scholar 

  40. S. Ashok, and K.P. Pande, Sol. Cells. 14, 61 (1985).

    Article  CAS  Google Scholar 

  41. H.I. Elsaeedy, H.A. Ammar Qasem, H.A. Yakout, and M. Mahmoud, J. Alloys Compd. 867, 159150 (2021).

    Article  CAS  Google Scholar 

  42. N. Başman, O. Uzun, S. Fiat, C. Alkan, and G. Çankaya, J. Mater. Sci. Mater. Electron. 23, 2282 (2012).

    Article  CAS  Google Scholar 

  43. S.S. Ou, O.M. Stafsudd, and B.M. Basol, Solid State Electron. 27, 21 (1984).

    Article  CAS  Google Scholar 

  44. Y. Zhao, and D.G. Truhlar, J. Phys. Chem. C. 112, 4061 (2008).

    Article  CAS  Google Scholar 

  45. P. Haisch, G. Winter, M. Hanack, L. Lüer, H.J. Egelhaai, and D. Oelkrug, Adv. Mater. 9, 316 (1997).

    Article  CAS  Google Scholar 

  46. J.G. Simmons, J. Phys. D Appl. Phys. 4, 613 (1971).

    Article  CAS  Google Scholar 

  47. T.G. Abdel-Malik, and R.M. Abdel-Latif, Phys. B Condens. Matter. 205, 59 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through Research Groups Program under grant number R.G.P.2/54/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Qasem.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshahrani, B., Nabil, S., Elsaeedy, H.I. et al. The Pivotal Role of Thermal Annealing of Cadmium Telluride Thin Film in Optimizing the Performance of CdTe/Si Solar Cells. Journal of Elec Materi 50, 4586–4598 (2021). https://doi.org/10.1007/s11664-021-08989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08989-3

Keywords

Navigation