Skip to main content
Log in

Dependence of Electrical Properties of Ni/n-GaP/Al Schottky Contacts on Measurement Temperature and Thermal Annealing

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ni/n-GaP/Al Schottky diodes have been fabricated and thermally annealed at 400°C to obtain Schottky rectifying contacts with optimum performance and improve understanding of the effect of thermal annealing and the measurement temperature (MT) on their electrical characteristics. The measurement temperature was varied from 100 K to 400 K in steps of 20 K to determine the current–voltage (IV) characteristics of the unannealed (as-deposited) and annealed diodes. The values of the barrier height (BH), ideality factor n, and Richardson constant of both diodes were determined by using the thermionic emission (TE) current equations. The results revealed that the BH of the annealed diode was higher than that of the as-deposited diode in the measurement temperature range of 260 K to 400 K; that is, a barrier modification by approximately 0.14 eV was observed. A greater series resistance \(R_{{\text{s}}}\) was obtained for the as-deposited than annealed diode at each temperature, except 140 K. This increase of \(R_{{\text{s}}}\) can be attributed to diffusion of Ni atoms into the GaP substrate due to the annealing at 400°C. The abnormalities in the diode parameters were successfully explained by TE current equations modified according to a Gaussian distribution of the temperature-dependent barrier heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M. Rahmani and A. Meftah, J. Mater. Sci. Mater. Electron. 31, 16359 (2020).

    Google Scholar 

  2. A.B. Patel, P. Chauhan, K. Patel, C.K. Sumesh, S. Narayan, K.D. Patel, G.K. Solanki, V.M. Pathak, P.K. Jha, and V. Patel, ACS Sustain. Chem. Eng. 8, 4809 (2020).

    Article  CAS  Google Scholar 

  3. L. Huang and D. Wang, J. Appl. Phys. 117, 57 (2015).

    Google Scholar 

  4. A. Buyukbas-Ulusan and A. Tataroglu, J. Mater. Sci. Mater. Electron. 31, 9888 (2020).

    Article  CAS  Google Scholar 

  5. A. Sabahi Namini, M. Shahedi Asl, G. Pirgholi-Givi, S.A. Delbari, J. Farazin, Ş Altındal, and Y. Azizian-Kalandaragh, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020).

    Article  Google Scholar 

  6. S. Asubay and A. Turut, Aust. J. Electr. Electron. Eng. 17, 278 (2020).

    Article  Google Scholar 

  7. A.B. Yadav, A. Pandey, D. Somvanshi, and S. Jit, IEEE Trans. Electron Devices 62, 1879 (2015).

    Article  CAS  Google Scholar 

  8. T.E. Zipperian, R.J. Chaffin, and R. Dawson, High-Temp. Electron. 2, 422 (1998).

    Google Scholar 

  9. M.M. Sobolev and V.G. Nikitin, Tech. Phys. Lett. 24, 329 (1998).

    Article  CAS  Google Scholar 

  10. H. Saghrouni, S. Jomni, W. Belgacem, N. Hamdaoui, and L. Beji, Physica B Phys. Condens. Matter 444, 58 (2014).

    Article  CAS  Google Scholar 

  11. N. Shiwakoti, A. Bobby, K. Asokan, and B. Antony, Microelectron. Reliab. 69, 40 (2017).

    Article  CAS  Google Scholar 

  12. N. Shiwakoti, A. Bobby, K. Asokan, and B. Antony, Mater. Sci. Semicond. Process. 74, 1 (2018).

    Article  CAS  Google Scholar 

  13. K. Ejderha, I. Orak, S. Duman, and A. Turut, J. Electron. Mater. 45, 3502 (2018).

    Article  Google Scholar 

  14. F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, Appl. Phys. Lett. 90, 092119 (2007).

    Article  Google Scholar 

  15. M. Saglam and A. Turut, Semicond. Sci. Technol. 12, 1028 (1997).

    Article  CAS  Google Scholar 

  16. J.L. Everaert, R.L. Van Meirhaeghe, W.H. Laflere, and F. Cardon, Semicond. Sci. Technol. 5, 60 (1990).

    Article  CAS  Google Scholar 

  17. K. Ejderha, N. Yildirim, A. Türüt, and B. Abay, EPJ Appl. Phys. 57, 10102 (2012).

    Article  Google Scholar 

  18. N. Yildirim, A. Turut, and H. Dogan, Surf. Rev. Lett. 25, 1 (2018).

    Article  Google Scholar 

  19. A. Turut, K. Ejderha, N. Yildirim, and B. Abay, J. Semicond. 37, 044001 (2016).

    Article  Google Scholar 

  20. N. Ylildirim, A. Turut, M. Biber, M. Saglam, and B. Guzeldir, Int. J. Mod. Phys. B 33, 1 (2019).

    Google Scholar 

  21. P.R. Sekhar Reddy, V. Janardhanam, K.H. Shim, S.N. Lee, A.A. Kumar, V.R. Reddy, and C.J. Choi, Thin Solid Films 713, 138343 (2020).

    Article  CAS  Google Scholar 

  22. M. Soylu and F. Yakuphanoglu, J. Alloys Compd. 506, 418 (2010).

    Article  CAS  Google Scholar 

  23. A. Dere, A. TataroŸğlu, A.G. Al-Sehemi, H. Eren, M. Soylu, A.A. Al-Ghamdi, and F. Yakuphanoglu, J. Electron. Mater. 49, 2317 (2020).

    Article  CAS  Google Scholar 

  24. R.K. Gupta and F. Yakuphanoglu, Microelectron. Eng. 105, 13 (2013).

    Article  CAS  Google Scholar 

  25. K. Erturk, M.C. Haciismailoglu, Y. Bektore, and M. Ahmetoglu, Int. J. Mod. Phys. B 22, 2309 (2008).

    Article  CAS  Google Scholar 

  26. O.F. Yüksel, N. Tuǧluoǧlu, H. Şafak, Z. Nalçacigil, M. Kuş, and S. Karadeniz, Thin Solid Films 534, 614 (2013).

    Article  Google Scholar 

  27. H. Cetin, B. Şahin, E. Ayyildiz, and A. Türüt, Semicond. Sci. Technol. 19, 1113 (2004).

    Article  CAS  Google Scholar 

  28. L. Boussouar, Z. Ouennoughi, N. Rouag, A. Sellai, R. Weiss, and H. Ryssel, Microelectron. Eng. 88, 969 (2011).

    Article  CAS  Google Scholar 

  29. C.D. Balbasi, M. Terlemezoglu, H.H. Gullu, D.E. Yildiz, and M. Parlak, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020).

    Article  Google Scholar 

  30. M.C. Özdemir, O. Sevgili, I. Orak, and A. Turut, Mater. Sci. Semicond. Process. 125, 105629 (2021).

    Article  Google Scholar 

  31. W.P. Leroy, K. Opsomer, S. Forment, and R.L. Van Meirhaeghe, Solid-State Electron. 49, 878 (2005).

    Article  CAS  Google Scholar 

  32. R.F. Schmitsdorf, T.U. Kampen, and W. Mönch, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 15, 1221 (1997).

    Article  CAS  Google Scholar 

  33. S.M. Tunhuma, F.D. Auret, M.J. Legodi, and M. Diale, Physica B Condens. Matter 480, 201 (2016).

    Article  CAS  Google Scholar 

  34. O. Vural, Y. Şafak, A. Türüt, and S. Altindal, J. Alloys Compd. 513, 107 (2012).

    Article  CAS  Google Scholar 

  35. H.A. Çetinkara, A. Türüt, D.M. Zeng̀n, and S. Erel, Appl. Surf. Sci. 207, 190 (2003).

    Article  Google Scholar 

  36. S. Chand and J. Kumar, J. Appl. Phys. 80, 288 (1996).

    Article  CAS  Google Scholar 

  37. J.H. Werner and H.H. Güttler, J. Appl. Phys. 73, 1315 (1993).

    Article  CAS  Google Scholar 

  38. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflère, and F. Cardon, Solid-State Electron. 29, 633 (1986).

    Article  CAS  Google Scholar 

  39. J. Osvald and Z.J. Horváth, Appl. Surf. Sci. 234, 349 (2004).

    Article  CAS  Google Scholar 

  40. P.R.S. Reddy, V. Janardhanam, K.H. Shim, V.R. Reddy, S.N. Lee, S.J. Park, and C.J. Choi, Vacuum 171, 109012 (2020).

    Article  CAS  Google Scholar 

  41. E. Evcin Baydilli, A. Kaymaz, H. Uslu Tecimer, and Ş Altındal, J. Electron. Mater. 49, 7427 (2020).

    Article  Google Scholar 

  42. D. Somvanshi and S. Jit, IEEE Trans. Nanotechnol. 13, 62 (2014).

    Article  CAS  Google Scholar 

  43. J.P. Sullivan, R.T. Tung, M.R. Pinto, and W.R. Graham, J. Appl. Phys. 70, 7403 (1991).

    Article  CAS  Google Scholar 

  44. R.T. Tung, Mater. Sci. Eng. R Rep. 35, 1 (2001).

    Article  Google Scholar 

  45. R.T. Tung, Phys. Rev. B 45, 13509 (1992).

    Article  CAS  Google Scholar 

  46. R.T. Tung, Appl. Phys. Rev. 1, 1 (2014).

    Google Scholar 

  47. H.J. Im, Y. Ding, J.P. Pelz, and W.J. Choyke, Phys. Rev. B Condens. Matter Mater. Phys. 64, 753101 (2001).

    Article  Google Scholar 

  48. M. Li, Z. Wang, X.P.A. Gao, and Z. Zhang, J. Phys. Chem. C 124, 10135 (2020).

    Article  CAS  Google Scholar 

  49. I.K. Er, A.O. Çağırtekin, M. Artuç, and S. Acar, J. Materi. Sci. Mater. Electron. 32, 1677 (2021).

    Article  CAS  Google Scholar 

  50. M. Biber, Ö. Güllü, S. Forment, R.L. Van Meirhaeghe, and A. Türüt, Semicond. Sci. Technol. 21, 1 (2006).

    Article  CAS  Google Scholar 

  51. M.S.P. Reddy, P. Puneetha, V.R. Reddy, J. Lee, S. Jeong, and C. Park, J. Electron. Mater. 45, 5655 (2016).

    Article  CAS  Google Scholar 

  52. E. Dobročka, and J. Osvald, Appl. Phys. Lett. 65, 575 (1994).

    Article  Google Scholar 

  53. H.H. Weitering, J.P. Sullivan, R.J. Carolissen, R. Pérez-Sandoz, W.R. Graham, and R.T. Tung, J. Appl. Phys. 79, 7820 (1996).

    Article  CAS  Google Scholar 

  54. A. Baltakesmez, S. Tekmen, and B. Güzeldir, Mater. Sci. Semicond. Process. 118, 105204 (2020).

    Article  CAS  Google Scholar 

  55. M. Missous, E.H. Rhoderick, D.A. Woolf, and S.P. Wilkes, Semicond. Sci. Technol. 7, 218 (1992).

    Article  CAS  Google Scholar 

  56. M. Uma, M. Siva Pratap Reddy, K. Ravindranatha Reddy, and V. Rajagopal Reddy, Vacuum 174, 109201 (2020).

    Article  CAS  Google Scholar 

  57. T.A.N.F. Lei and C.L. Lee, Solid State Electron. 22, 1035 (1979).

    Article  CAS  Google Scholar 

  58. M.S. Gorji and K.Y. Cheong, Crit. Rev. Solid-State Mater. Sci. 40, 197 (2015).

    Article  CAS  Google Scholar 

  59. S.J. Eglash, N. Newman, S. Pan, D. Mo, K. Shenai, W.E. Spicer, F.A. Ponce, and D.M. Collins, J. Appl. Phys. 61, 5159 (1987).

    Article  CAS  Google Scholar 

  60. A. Turut, A. Karabulut, K. Ejderha, and N. Biyikli, Mater. Sci. Semicond. Process. 39, 400 (2015).

    Article  CAS  Google Scholar 

  61. A. Karabulut, I. Orak, M. Caglar, and A. Turut, Surf. Rev. Lett. 26, 1 (2019).

    Article  Google Scholar 

  62. A. Turut, A. Karabulut, and H. Efeoǧlu, J. Optoelectron. Adv. Mater. 19, 424 (2017).

    CAS  Google Scholar 

  63. A. Karabulut, H. Efeoglu, and A. Turut, J. Semicond. 38, 1 (2017).

    Article  Google Scholar 

  64. A. Karabulut, İ Orak, and A. Türüt, Int. J. Chem. Technol. 2, 116 (2018).

    Article  Google Scholar 

  65. H. Durmuş, M. Yıldırım, and Ş Altındal, J. Mater. Sci. Mater. Electron. 30, 9029 (2019).

    Article  Google Scholar 

  66. S.B. Carlsson, K. Deppert, L. Montelius, and L. Samuelson, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 14, 2794 (1996).

    Article  Google Scholar 

  67. S. Zhu, R.L. Van Meirhaeghe, S. Forment, G.P. Ru, X.P. Qu, and B.Z. Li, Solid-State Electron. 48, 1205 (2004).

    Article  CAS  Google Scholar 

  68. G.P. Ru, R.L. Van Meirhaeghe, S. Forment, Y.L. Jiang, X.P. Qu, S. Zhu, and B.Z. Li, Solid-State Electron. 9, 606 (2005).

    Article  Google Scholar 

  69. A. Gümüs, A. Türüt, and N. Yalçin, J. Appl. Phys. 91, 245 (2002).

    Article  Google Scholar 

  70. S. Mahato and J. Puigdollers, Physica B Condens. Matter 530, 327 (2018).

    Article  CAS  Google Scholar 

  71. Y.L. Jiang, G.P. Ru, F. Lu, X.P. Qu, B.Z. Li, W. Li, and A.Z. Li, Chin. Phys. Lett. 19, 553 (2002).

    Article  Google Scholar 

  72. A.F. Hamida, Z. Ouennoughi, A. Sellai, R. Weiss, and H. Ryssel, Semicond. Sci. Technol. 23, 045005 (2008).

    Article  Google Scholar 

  73. B. Abay, G. Çankaya, H.S. Güder, H. Efeoǧlu, and Y.K. Yoǧurtçu, Semicond. Sci. Technol. 18, 75 (2003).

    Article  CAS  Google Scholar 

  74. Z.J. Horváth, Curr. Appl. Phys. 6, 145 (2006).

    Article  Google Scholar 

  75. E.E. Baydilli, S.O. Tan, and H.U. Tecimer, Physica B Phys. Condens. Matter 598, 412457 (2020).

    Article  CAS  Google Scholar 

  76. J.H. Werner and H.H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  CAS  Google Scholar 

  77. S. Chand and J. Kumar, Appl. Phys. A Mater. Sci. Process. 65, 497 (1997).

    Article  CAS  Google Scholar 

  78. N. Shiwakoti, A. Bobby, K. Asokan, and B. Antony, Mater. Sci. Semicond. Process. 61, 145 (2017).

    Article  CAS  Google Scholar 

  79. M.H. Hecht, L.D. Bell, W.J. Kaiser, and F.J. Grunthaner, Appl. Phys. Lett. 55, 780 (1989).

    Article  CAS  Google Scholar 

  80. Ş Karataş, Ş Altindal, A. Türüt, and A. Özmen, Appl. Surf. Sci. 217, 250 (2003).

    Article  Google Scholar 

  81. A. Turut, Turk. J. Phys. 36, 235 (2012).

    CAS  Google Scholar 

  82. A. Turut, D.E. Yıldız, A. Karabulut, and I. Orak, J. Mater. Sci. Mater. Electron. 31, 7839 (2020).

    Article  CAS  Google Scholar 

  83. G.M. Vanalme, L. Goubertt, R.L. Van Meirhaeghe, F. Cardon, and P. Van Daele, Semicond. Sci. Technol. 14, 871 (1999).

    Article  CAS  Google Scholar 

  84. D. Korucu, S. Duman, and A. Turut, Mater. Sci. Semicond. Process. 30, 393 (2015).

    Article  CAS  Google Scholar 

  85. G.M. Vanalme, R.L. Van Meirhaeghe, F. Cardon, and P. Van Daele, Semicond. Sci. Technol. 12, 907 (1997).

    Article  CAS  Google Scholar 

  86. S. Chand and J. Kumar, Semicond. Sci. Technol. 11, 1203 (1996).

    Article  CAS  Google Scholar 

  87. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  CAS  Google Scholar 

  88. P. Kaushal, S. Chand, and J. Osvald, Int. J. Electron. 100, 686 (2013).

    Article  CAS  Google Scholar 

  89. B. Güzeldir, M. Saǧlam, A. Ateş, and A. Türüt, J. Alloys Compd. 627, 200 (2015).

    Article  Google Scholar 

  90. P. Chattopadhyay and A.N. Daw, Solid-State Electron. 29, 555 (1986).

    Article  CAS  Google Scholar 

  91. A. Türüt, N. Yalçin, and M. Saǧlam, Solid-State Electron. 35, 835 (1992).

    Article  Google Scholar 

  92. A. Türüt, Turk. J. Phys. 44, 302 (2020).

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Ejderha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejderha, K., Turut, A. Dependence of Electrical Properties of Ni/n-GaP/Al Schottky Contacts on Measurement Temperature and Thermal Annealing. J. Electron. Mater. 50, 6741–6747 (2021). https://doi.org/10.1007/s11664-021-08983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08983-9

Keywords

Navigation