Skip to main content

Advertisement

Log in

Effects of Components in Solvent-Enhanced PVDF-HFP-Based Polymer Electrolyte on Its Electrochemical Performance

  • Topical Collection: Carbon-Based Materials for Energy Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium (Li) metal has been considered as a potential substitute for the graphite anode in Li-ion batteries to further boost their energy density. Polymer electrolytes (PEs) are expected to be applied in Li metal batteries (LMB) to replace liquid electrolytes due to safety concerns. Among others, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based electrolytes offer clear advantages such as improved processability and chemical/electrochemical stability. However, Li dendrite growth in LMBs and the low Li-ion conductivity of solid polymer electrolytes (SPEs) still hinder their practical applications. To address this issue, it has been proposed that solvent-enhanced PVDF-HFP-based polymer electrolytes (SPPEs) with a tuned amount of residual N-methyl-2-pyrrolidone (NMP) could provide improved ionic conductivity and outstanding chemical/electrochemical stability. We report herein the effects of different salts, polymer, and additives on the electrochemical performance and interface stability of SPPEs. We demonstrate that lithium salts and blended polymers play a pivotal role in the electrochemical performance of SPPEs. In addition, additives exert a remarkable effect on the stripping/plating behaviors of metallic lithium anode in SPPEs. SPPEs with adequate LiNO3 are found to be stable with lower overpotentials at 0.5 mA cm−2 on cycling of symmetrical Li cells. These results highlight novel SPPE strategies for optimizing the ionic conductivity and stabilizing the lithium metal anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

References

  1. Z. Li, J. Huang, B.Y. Liaw, V. Metzler, and J.B. Zhang, J. Power Sources 254, 168 (2014).

    Article  CAS  Google Scholar 

  2. D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, Solid State Ionics 148, 405 (2002).

    Article  CAS  Google Scholar 

  3. Q. Zhao, X.T. Liu, S. Stalin, K. Khan, and L.A. Archer, Nat. Energy 4, 365 (2019).

    Article  CAS  Google Scholar 

  4. Y.J. Shen, M.J. Reddy, and P.P. Chu, Solid State Ionics 175, 747 (2004).

    Article  CAS  Google Scholar 

  5. J.Q. Zhang, B. Sun, X.D. Huang, S.Q. Chen, G.X. Wang. Sci Rep-Uk 4, (2014).

  6. W.H. Pu, X.M. He, L. Wang, C.Y. Jiang, and C.R. Wan, J. Membrane Sci. 272, 11 (2006).

    Article  CAS  Google Scholar 

  7. X. Zhang, S. Wang, C.J. Xue, C.Z. Xin, Y.H. Lin, Y. Shen, L.L. Li, C.W. Nan, Adv. Mater. 32, (2020).

  8. X. Zhang, S. Wang, C.J. Xue, C.Z. Xin, Y.H. Lin, Y. Shen, L.L. Li, C.W. Nan, Adv. Mater. 31, (2019).

  9. P.C. Yao, B. Zhu, H.W. Zhai, X.B. Liao, Y.X. Zhu, W.H. Xu, Q. Cheng, C. Jayyosi, Z. Li, J. Zhu, K.M. Myers, X. Chen, and Y. Yang, Nano Lett. 18, 6113 (2018).

    Article  CAS  Google Scholar 

  10. C.V. Amanchukwu, Z. Yu, X. Kong, J. Qin, Y. Cui, and Z.N. Bao, J. Am. Chem. Soc. 142, 7393 (2020).

    Article  CAS  Google Scholar 

  11. P. Barai, K. Higa, and V. Srinivasan, Phys. Chem. Chem. Phys. 19, 20493 (2017).

    Article  CAS  Google Scholar 

  12. X.R. Chen, Y.X. Yao, C. Yan, R. Zhang, X.B. Cheng, and Q. Zhang, Angew. Chem. Int. Ed. 59, 7743 (2020).

    Article  CAS  Google Scholar 

  13. S. Bag, C. Zhou, P.J. Kim, V.G. Pol, and V. Thangadurai, Energy Storage Mater. 24, 198 (2020).

    Article  Google Scholar 

  14. J. Deng, T.Y. Xiong, H.Y. Wang, A.M. Zheng, and Y. Wang, ACS Sustain. Chem. Eng. 4, 3750 (2016).

    Article  CAS  Google Scholar 

  15. Peter, V., Wright, Br. Polym. J. (1975).

  16. S.K. Chaurasia, and A. Chandra, Solid State Ionics 307, 35 (2017).

    Article  CAS  Google Scholar 

  17. M.M.E. Jacob, S.R.S. Prabaharan, and S. Radhakrishna, Solid State Ionics 104, 267 (1997).

    Article  CAS  Google Scholar 

  18. G. Bieker, M. Winter, and P. Bieker, Phys. Chem. Chem. Phys. 17, 8670 (2015).

    Article  CAS  Google Scholar 

  19. Q.C. Liu, J.J. Xu, S. Yuan, Z.W. Chang, D. Xu, Y.B. Yin, L. Li, H.X. Zhong, Y.S. Jiang, J.M. Yan, and X.B. Zhang, Adv. Mater. 27, 5241 (2015).

    Article  CAS  Google Scholar 

  20. J. Pan, Y.T. Cheng and Y. Qi, Phys. Rev. B 91, 134116 (2015).

  21. Y.Y. Lu, Z.Y. Tu, and L.A. Archer, Nat. Mater. 13, 961 (2014).

    Article  CAS  Google Scholar 

  22. C. Yan, X.B. Cheng, Y. Tian, X. Chen, X.Q. Zhang, W.J. Li, J.Q. Huang, and Q. Zhang, Adv. Mater. 30, 1707629 (2018).

    Article  Google Scholar 

  23. X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, and Q. Zhang, Adv. Funct. Mater. 27, 1605989 (2017).

    Article  Google Scholar 

  24. R. Elazari, G. Salitra, G. Gershinsky, A. Garsuch, A. Panchenko, and D. Aurbach, Electrochem. Commun. 14, 21 (2012).

    Article  CAS  Google Scholar 

  25. T. Lapp, S. Skaarup, and A. Hooper, Solid State Ionics 11, 97 (1983).

    Article  CAS  Google Scholar 

  26. S.F. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J.J. Xu, P.F. Wang, L. Chen, J.X. Zhang, T. Deng, S. Hou, T. Jin, H.L. Wan, J.R. Li, J.P. Tu, and C.S. Wang, Angew. Chem. Int. Ed. 60, 3661 (2021).

    Article  CAS  Google Scholar 

  27. C.M. Burke, V. Pande, A. Khetan, V. Viswanathan, and B.D. McCloskey, Proc. Natl. Acad. Sci. USA 112, 9293 (2015).

    Article  CAS  Google Scholar 

  28. X.F. Yang, M. Jiang, X.J. Gao, D. Bao, Q. Sun, N. Holmes, H. Duan, S. Mukherjee, K. Adair, C.T. Zhao, J.W. Liang, W.H. Li, J.J. Li, Y. Liu, H. Huang, L. Zhang, S.G. Lu, Q.W. Lu, R.Y. Li, C.V. Singh, and X.L. Sun, Energ. Environ Sci. 13, 1318 (2020).

    Article  CAS  Google Scholar 

  29. E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, and D. Aurbach, ACS Energy Lett. 2, 1321 (2017).

    Article  CAS  Google Scholar 

  30. B.D. Adams, J.M. Zheng, X.D. Ren, W. Xu, and J.G. Zhang, Adv. Energy Mater. 8, 1702097 (2018).

    Article  Google Scholar 

  31. K. Park and J.B. Goodenough, Adv. Energy Mater. 7, 1700732 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by ZJNSF (No. LR20E010001), National Key Research and Development Program of China (No. SQ2018YFE011526), Zhejiang Provincial Key Research and Development Program (2021C01004 and 2019C01121), Chao Kuang Piu High Tech Development Fund (2020ZL012), and Aeronautical Science Foundation (2019ZF076002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faxiang Qin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qin, F. Effects of Components in Solvent-Enhanced PVDF-HFP-Based Polymer Electrolyte on Its Electrochemical Performance. J. Electron. Mater. 50, 5049–5056 (2021). https://doi.org/10.1007/s11664-021-08971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08971-z

Keywords

Navigation