Skip to main content

Advertisement

Log in

Synthesis of Metal-Oxide-Supported Triple Nano Catalysts and Application to H2 Production and H2O2 Oxidation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Magnesium oxide (MgO)-supported nanocatalysts are a highly insulating crystalline solid with a sodium chloride crystal structure and excellent properties including chemical inertness, high temperature stability and high thermal conductivity. Here, a ternary alloy catalyst of MgO-supported CoMoB was synthesized by means of a chemical reduction method using ethylene glycol solution. The prepared CoMoB/MgO catalysts were characterized using x-ray diffraction, scanning electron microscopy (SEM/EDX) and Fourier transform infrared spectroscopic analysis. The CoMoB/MgO nanocomposite served as the enabling platform for a range of applications including hydrogen production catalyst and hydrogen peroxide (H2O2) determination. It also showed a high hydrogen production rate (1000 mLg −1cat  min−1) and low activation energy (68.319 kJ mol−1) for the hydrolysis of ammonia borane. Additionally, the electro-oxidation performance of the CoMoB/MgO for H2O2 detection was studied by cyclic voltammetry and chronoamperometry. The CoMoB/MgO sensor demonstrated a wide linear range up to 10 mM with a detection limit of 3.3 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Mitchell, Platin. Met. Rev. 51, 83 (2007).

    Article  Google Scholar 

  2. H.Q. Zheng, F.F. Gao, and V. Valtchev, J. Mater. Chem. A 4, 16756 (2016).

    Article  CAS  Google Scholar 

  3. Q. Zhang and Y.D. Yin, Pure Appl. Chem. 86, 53 (2014).

    Article  CAS  Google Scholar 

  4. A. Aceves, O. Novaro, T. Lopez, and R. Gomez, J. Phys. Chem. 99, 14403 (1995).

    Article  Google Scholar 

  5. M. Zahmakiran and S. Ozkar, Mater. Chem. Phys. 121, 359 (2010).

    Article  CAS  Google Scholar 

  6. H.C. Kazici, F. Yildiz, M.S. Izgi, B. Ulas, and H. Kivrak, Int. J. Hydrogen Energy 44, 10561 (2019).

    Article  CAS  Google Scholar 

  7. M.S. Izgi, E. Onat, H.C. Kazici, and O. Sahin, Energ. Sources Part A: Recovery Util. Environ. Effects (2019). https://doi.org/10.1080/15567036.2019.1677814.

  8. F.B. Su, L. Lv, F.Y. Lee, T. Liu, A.I. Cooper, and X.S. Zhao, J. Am. Chem. Soc. 129, 14213 (2007).

    Article  CAS  Google Scholar 

  9. H. Choi, S.R. Al-Abed, S. Agarwal, and D.D. Dionysiou, Chem. Mater. 20, 3649 (2008).

    Article  CAS  Google Scholar 

  10. A. Barau, V. Budarin, A. Caragheorgheopol, R. Luque, D.J. Macquarrie, A. Prelle, V.S. Teodorescu, and M. Zaharescu, Catal. Lett. 124, 204 (2008).

    Article  CAS  Google Scholar 

  11. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, and B. Delmon, J. Catal. 144, 175 (1993).

    Article  CAS  Google Scholar 

  12. A. Martinez and G. Prieto, Catal. Commun. 8, 1479 (2007).

    Article  CAS  Google Scholar 

  13. Z.H. Zhang and Z.Y. Wang, J. Org. Chem. 71, 7485 (2006).

    Article  CAS  Google Scholar 

  14. S. Dominguez-Dominguez, J.A. Pardilla, A.B. Murcia, E. Morallon, and D. Cazorla-Amoros, J. Appl. Electrochem. 38, 259 (2008).

    Article  CAS  Google Scholar 

  15. Y. Shu, Q.Y. Yin, J. Benedict, G.W. Zhou, and Z.Y. Gu, J. Alloy. Compd. 712, 848 (2017).

    Article  CAS  Google Scholar 

  16. Y.C. Zhao, Z. Ning, J.N. Tian, H.W. Wang, X.Y. Liang, S.L. Nie, Y. Yu, and X.X. Li, J. Power Sources 207, 120 (2012).

    Article  CAS  Google Scholar 

  17. D.Y. Xu, H.M. Zhang, and W. Ye, Catal. Commun. 8, 1767 (2007).

    Article  CAS  Google Scholar 

  18. S. Ozkar and M. Zahmakiran, J. Alloy. Compd. 404, 728 (2005).

    Article  CAS  Google Scholar 

  19. P. Krishnan, T.H. Yang, W.Y. Lee, and C.S. Kim, J. Power Sources 143, 17 (2005).

    Article  CAS  Google Scholar 

  20. N. Patel, B. Patton, C. Zanchetta, R. Fernandes, G. Guella, A. Kale, and A. Miotello, Int. J. Hydrogen Energy 33, 287 (2008).

    Article  CAS  Google Scholar 

  21. Y. Liang, H.B. Dai, L.P. Ma, P. Wang, and H.M. Cheng, Int. J. Hydrogen Energy 35, 3023 (2010).

    Article  CAS  Google Scholar 

  22. Y.V. Larichev, O.V. Netskina, O.V. Komova, and V.I. Simagina, Int. J. Hydrogen Energy 35, 6501 (2010).

    Article  CAS  Google Scholar 

  23. D.H. Sun, V. Mazumder, O. Metin, and S.H. Sun, ACS Nano 5, 6458 (2011).

    Article  CAS  Google Scholar 

  24. Z.H. Lu, H.L. Jiang, M. Yadav, K. Aranishi, and Q. Xu, J. Mater. Chem. 22, 5065 (2012).

    Article  CAS  Google Scholar 

  25. J.M. Yan, X.B. Zhang, T. Akita, M. Haruta, and Q. Xu, J. Am. Chem. Soc. 132, 5326 (2010).

    Article  CAS  Google Scholar 

  26. H.L. Jiang, T. Umegaki, T. Akita, X.B. Zhang, M. Haruta, and Q. Xu, Chem. Eur. J. 16, 3132 (2010).

    Article  CAS  Google Scholar 

  27. F.Y. Cheng, H. Ma, Y.M. Li, and J. Chen, Inorg. Chem. 46, 788 (2007).

    Article  CAS  Google Scholar 

  28. F.Y. Qiu, Y.L. Dai, L. Li, C.C. Xu, Y.N. Huang, C.C. Chen, Y.J. Wang, L.F. Jiao, and H.T. Yuan, Int. J. Hydrogen Energy 39, 436 (2014).

    Article  CAS  Google Scholar 

  29. A.A. Vernekar, S.T. Bugde, and S. Tilve, Int. J. Hydrogen Energy 37, 327 (2012).

    Article  CAS  Google Scholar 

  30. Y. Malyukin, V. Seminko, P. Maksimchuk, E. Okrushko, O. Sedyh, and Y. Zorenko, Opt. Mater. 85, 303 (2018).

    Article  CAS  Google Scholar 

  31. S.H. Chen, R. Yuan, Y.Q. Chai, and F.X. Hu, Microchim. Acta 180, 15 (2013).

    Article  CAS  Google Scholar 

  32. G.H. Jin, E. Ko, M.K. Kim, V.K. Tran, S.E. Son, Y. Geng, W. Hur, and G.H. Seong, Sens. Actuators B Chem. 274, 201 (2018).

    Article  CAS  Google Scholar 

  33. H. Yu, Q. L. Sheng, J. Bin Zheng, Electrochimica Acta 52, 4403 (2007).

  34. A. Caglar, H.C. Kazici, D. Alpaslan, Y. Yilmaz, H. Kivrak, and N. Aktas, Fuller. Nanotub. Carbon Nanostruct. 27, 736 (2019).

    Article  CAS  Google Scholar 

  35. H.C. Kazici, A. Caglar, T. Aydogmus, N. Aktas, and H. Kivrak, J. Colloid Interface Sci. 530, 353 (2018).

    Article  CAS  Google Scholar 

  36. D. Duzenli, O. Sahin, H.C. Kazici, N. Aktas, and H. Kivrak, Microporous Mesoporous Mater. 257, 92 (2018).

    Article  CAS  Google Scholar 

  37. H.C. Kazici, F. Salman, and H.D. Kivrak, Mater. Sci. Poland 35, 660 (2017).

    Article  CAS  Google Scholar 

  38. N. Patel, R. Fernandes, and A. Miotello, J. Catal. 271, 315 (2010).

    Article  CAS  Google Scholar 

  39. A. Baiker, Faraday Discuss. 87, 239 (1989).

    Article  CAS  Google Scholar 

  40. K. Byrappa, A.K. Subramani, S. Ananda, K.M.L. Rai, M.H. Sunitha, B. Basavalingu, and K. Soga, J. Mater. Sci. 41, 1355 (2006).

    Article  CAS  Google Scholar 

  41. H.F. Jiang, R. Lu, X.Q. Si, X.L. Luo, J. Xu, and F. Lu, Chemcatchem 11, 4291 (2019).

    Article  CAS  Google Scholar 

  42. O. Albayrak and M. Ugurlu, J. Fac. Eng. Architect. Gazi Univ. 31, 750 (2016).

    Google Scholar 

  43. M. Yang, J.W. Wang, C.Y. Xiao, and H.Y. Zhao, Integr. Ferroelectr. 172, 1 (2016).

    Article  CAS  Google Scholar 

  44. S. Guo, Q. Wu, J. Sun, T. Chen, M. Feng, Q. Wang, Z. Wang, B. Zhao, and W. Ding, Int. J. Hydrogen Energ. 42, 21063 (2017).

  45. S. Sengodan, R. Lan, J. Humphreys, D.W. Du, W. Xu, H.T. Wang, and S.W. Tao, Renew. Sustain. Energy Rev. 82, 761 (2018).

    Article  CAS  Google Scholar 

  46. X. Yang, Q.L. Li, L.L. Li, J. Lin, X.J. Yang, C. Yu, Z.Y. Liu, Y. Fang, Y. Huang, and C.C. Tang, J. Power Sources 431, 135 (2019).

    Article  CAS  Google Scholar 

  47. G.Z. Chen, S. Desinan, R. Rosei, F. Rosei, and D.L. Ma, Chem. A Eur. J. 18, 7925 (2012).

    Article  CAS  Google Scholar 

  48. S. Basu, A. Brockman, P. Gagare, Y. Zheng, P.V. Ramachandran, W.N. Delgass, and J.P. Gore, J. Power Sources 188, 238 (2009).

    Article  CAS  Google Scholar 

  49. K. Eom, M. Kim, R. Kim, D. Nam, and H. Kwon, J. Power Sources 195, 2830 (2010).

    Article  CAS  Google Scholar 

  50. X.G. Feng, X.M. Chen, P.T. Qiu, D.P. Wu, E.J.M. Hamilton, J. Zhang, and X.N. Chen, Int. J. Hydrogen Energy 43, 20875 (2018).

    Article  CAS  Google Scholar 

  51. N. Sahiner, S. Butun, O. Ozay, and B. Dibek, J. Colloid Interface Sci. 373, 122 (2012).

    Article  CAS  Google Scholar 

  52. N. Mohajeri, A. T-Raissi, O. Adebiyi, Journal of Power Sources 167, 482 (2007).

  53. M. Zahmakiran and S. Ozkar, Appl. Catal. B Environ. 89, 104 (2009).

    Article  CAS  Google Scholar 

  54. F. Seven and N. Sahiner, Int. J. Hydrogen Energy 38, 15275 (2013).

    Article  CAS  Google Scholar 

  55. Q. Xu and M. Chandra, J. Alloy. Compd. 446, 729 (2007).

    Article  CAS  Google Scholar 

  56. A.K. Figen and B. Coskuner, Int. J. Hydrogen Energy 38, 2824 (2013).

    Article  CAS  Google Scholar 

  57. H.C. Kazici, F. Salman, A. Caglar, H. Kivrak, and N. Aktas, Fuller. Nanotubes Carbon Nanostruct. 26, 145 (2018).

    Article  CAS  Google Scholar 

  58. W. Gao, W.W. Tjiu, J.C. Wei, and T.X. Liu, Talanta 120, 484 (2014).

    Article  CAS  Google Scholar 

  59. A.M. Golsheikh, N.M. Huang, H.N. Lim, R. Zakaria, and C.Y. Yin, Carbon 62, 405 (2013).

    Article  CAS  Google Scholar 

  60. Y.L. Zhang, Y.P. Liu, J.M. He, P.F. Pang, Y.T. Gao, and Q.F. Hu, Electrochim. Acta 90, 550 (2013).

    Article  CAS  Google Scholar 

  61. S. Liu, J.Q. Tian, L. Wang, H.L. Li, Y.W. Zhang, and X.P. Sun, Macromolecules 43, 10078 (2010).

    Article  CAS  Google Scholar 

  62. M.M. Liu, R. Liu, and W. Chen, Biosens. Bioelectron. 45, 206 (2013).

    Article  CAS  Google Scholar 

  63. W. Liu, H.X. Zhang, B. Yang, Z.J. Li, L.C. Lei, and X.W. Zhang, J. Electroanal. Chem. 749, 62 (2015).

    Article  CAS  Google Scholar 

  64. M. Janyasupab, C.W. Liu, Y. Zhang, K.W. Wang, and C.C. Liu, Sens. Actuators B Chem. 179, 209 (2013).

    Article  CAS  Google Scholar 

  65. S. Liu, L. Wang, J.Q. Tian, Y.L. Luo, X.X. Zhang, and X.P. Sun, J. Colloid Interface Sci. 363, 615 (2011).

    Article  CAS  Google Scholar 

  66. F.X. Jiang, R.R. Yue, Y.K. Du, J.K. Xu, and P. Yang, Biosens. Bioelectron. 44, 127 (2013).

    Article  CAS  Google Scholar 

  67. O.G. Sahin, Electrochim. Acta 180, 873 (2015).

    Article  CAS  Google Scholar 

  68. Y.C. Li, Y.M. Zhong, Y.Y. Zhang, W. Weng, and S.X. Li, Sens. Actuators B Chem. 206, 735 (2015).

    Article  CAS  Google Scholar 

  69. Y.F. Zhang, X.J. Bo, C. Luhana, H. Wang, M. Li, and L.P. Guo, Chem. Commun. 49, 6885 (2013).

    Article  CAS  Google Scholar 

  70. A.X. Gu, G.F. Wang, J. Gu, X.J. Zhang, and B. Fang, Electrochim. Acta 55, 7182 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilal Çelik Kazici.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik Kazici, H., Salman, F., İzgi, M.S. et al. Synthesis of Metal-Oxide-Supported Triple Nano Catalysts and Application to H2 Production and H2O2 Oxidation. J. Electron. Mater. 49, 3634–3644 (2020). https://doi.org/10.1007/s11664-020-08061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08061-6

Keywords

Navigation