Skip to main content
Log in

Study of the Structural, Optical, Dielectric and Magnetic Properties of Copper-Doped SnO2 Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work explores the structural, optical and dielectric properties and the magnetic behaviour of copper (Cu) (0–4%)-doped tin dioxide (SnO2) nanoparticles, synthesized by the sol–gel method using methanol as solvent. X-ray diffraction (XRD) analysis confirmed the tetragonal structure of SnO2. The inclusion of Cu in the SnO2 lattice enhanced the crystallite size of the Cu-doped SnO2 nanoparticles, as determined by the Scherrer method, and crystallite sizes were found to be consistent with the Williamson–Hall method. The morphology, observed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), revealed the formation of uniformly distributed nanoparticles of spherical shape. The formation of a characteristic peak in the range of 480–750 cm−1 was associated with an antisymmetric O-Sn-O bridge functional group of SnO2. The reduced band gap is in accordance with the quantum confinement effect in synthesized samples. Strain-influenced dielectric studies conducted at room temperature within a frequency range of 1 Hz to 7 MHz revealed a relatively high dielectric constant, AC conductivity and low dielectric loss. Here, for the first time, electric modulus formalism is adapted to analyse the relaxation mechanism in Cu-doped SnO2 nanoparticles. The relaxation peak shift towards lower frequency (\( \approx 1\;{\hbox{kHz}}) \) in the investigated samples indicates the short-range mobility of ions and longer relaxation times. The transition from a diamagnetic to a paramagnetic state is confirmed by the addition of Cu content in the SnO2 lattice. The observed paramagnetism of the Cu-doped SnO2 nanoparticles is correlated with lattice strain. Cu doping led to an increase in magnetic moment on the order of 10−1 emu/g. The synthesized samples with high dielectric constant, low dielectric loss and paramagnetic behaviour are found to be efficient candidates for high-frequency devices and biomedical applications. The longer relaxation times may make them suitable for future memory materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Seabra and N. Durán, Nanotoxicology of metal oxide nanoparticles. Metals 5, 934 (2015).

    Article  CAS  Google Scholar 

  2. S.K. Tripathy and T.N.V. Prabhakara Rao, J. Nano Electron. Phys. 9, 02019 (2017).

    Article  CAS  Google Scholar 

  3. S. Sarmah and A. Kumar, Indian J. Phys. 84, 1211 (2010).

    Article  CAS  Google Scholar 

  4. M.S. Pereira, F.A.S. Lima, C.B. Silva, P.T.C. Freire, and I.F. Vasconcelos, J. Sol-Gel. Sci. Technol. 84, 206 (2017).

    Article  CAS  Google Scholar 

  5. S. Nilavazhagan, S. Muthukumaran, and M. Ashokkumar, Microstruct. J. Mater. Sci: Mater. Electron. 26, 3989–3996 (2015).

    CAS  Google Scholar 

  6. M. Parthibavarman, V. Hariharan, C. Sekar, and V.N. Singh, J. Optoelectron. Adv. Mater. 12, 1894 (2010).

    CAS  Google Scholar 

  7. S. Zulfiqar, Z. Iqbal, and L. Jianguo, Chin. Phys. B 26, 126104 (2017).

    Article  CAS  Google Scholar 

  8. A. Ayeshamariam, V.S. Vidhya, S. Sivaranjani, M. Bououdina, R. PerumalSamy, and M. Jayachandran, J. Nanoelectron. Optoelectron. 8, 1 (2013).

    Article  CAS  Google Scholar 

  9. M. Aziz, W. Rosemaria, and W. Baharom, J. Mater. Lett. 91, 31–34 (2013).

    Article  CAS  Google Scholar 

  10. H.-C. Chiu and C.-S. Yeh, J. Phys. Chem. C 111, 7256–7259 (2007).

    Article  CAS  Google Scholar 

  11. S. Tazikeh, A. Akbar, A. Taleb, and E. Taleb, Mater. Sci. Poland 32, 98 (2014).

    Article  CAS  Google Scholar 

  12. W.B. Soltan, S. Nasri, M.S. Lassoued, and S. Ammar, J. Mater. Sci. Mater. Electron. 28, 6649–6656 (2017).

    Article  CAS  Google Scholar 

  13. G. Lu, K.L. Huebner, L.E. Ocola, M. Gajdardziska-Josifovska, J. Chen, and Hindawi Publishing Corporation, J. Nanomater. (2006). https://doi.org/10.1155/JNM/2006/60828.

    Article  Google Scholar 

  14. Q. Zhao, L. Ma, Q. Zhang, C. Wang, and X. Xijin, J. Nanomater. (2015). https://doi.org/10.1155/2015/850147.

    Article  Google Scholar 

  15. Z. Dai, M. Peng, X. Cai, Y. Fu, X. Yu, S. Liu, B. Deng, and K. Hany, J. Power Sources 247, 8673–8680 (2014).

    Google Scholar 

  16. E. Pradyumna, N. Sreelekha, D. Amaranatha, K.R. Gunasekhar, and K. Subramanyam, Int. J. Adv. Eng. Nano Technol. 2, 22 (2015).

    Google Scholar 

  17. A. Kolmakov, Y.X. Zhang, G.S. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003).

    Article  CAS  Google Scholar 

  18. S. PhilKim, M. YongChoi, and H. ChulChoi, Mater. Res. Bull. 74, 85 (2016).

    Article  CAS  Google Scholar 

  19. C.W. Zhang, H. Kao, and J.M. Dong, Phys. Lett. A 373, 2592 (2009).

    Article  CAS  Google Scholar 

  20. R. Zulfiqar, Y. Yuan, Z. Iqbal, J. Yang, W. Wang, Z. Ye, and J. Lu, J. Mater. Sci. Mater. Electron. 27, 12 (2016).

    Article  CAS  Google Scholar 

  21. M.P. Rajeeva, C.S. Naveen, A.R. Lamani, and H.S. Jayamma, J. Mater. Sci. Mater. Electron. 28, 21 (2017).

    Article  CAS  Google Scholar 

  22. A. Ahmed, M. Naseem Siddique, T. Ali, P. Tripathi, in AIP Conference Proceedings, pp. 1–4 (2018).

  23. F.A. Mir, K.M. Batoo, I. Chatterjee, and G.M. Bhat, J. Mater. Sci. Mater. Electron. 25, 3 (2014).

    Google Scholar 

  24. S.K. Pandian, K. Karthik, K. Sureshkumar, and N. Victor Jaya, Mater. Manuf. Process. 27, 130 (2012).

    Article  CAS  Google Scholar 

  25. R. Singh and B.C. Yadav, J. Comput. Theor. Nanosci. 20, 5 (2010).

    Google Scholar 

  26. S. Benzitouni, M. Zaabat, A. Khial, D. Rechem, A. Benaboud, D. Bouras, A. Mahdjoub, M. Toubane, and R. Coste, Adv. Nanopart. 5, 140 (2016).

    Article  CAS  Google Scholar 

  27. S. S. Roy, J. Podder, in Proceedings of the International Conference on Mechanical Engineering (2009), pp. 26–28.

  28. S. Sagadevan, Z.Z. Chowdhury, M. Johan, R. Bin, F.A. Aziz, L.S. Roselin, J. Podder, J.A. Lett, and R. Selvin, J. Nanosci. Nanotechnol. 19, 7139 (2019).

    Article  CAS  Google Scholar 

  29. P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, and M. Shamsuddin, Curr. Appl. Phys. 13, 479 (2013).

    Article  Google Scholar 

  30. J. Zhang, Y. Zhang, K.W. Xu, and V. Ji, Solid State Commun. 139, 87 (2006).

    Article  CAS  Google Scholar 

  31. S. Sagadevan, J. Nano Res. 3, 91 (2015).

    Article  CAS  Google Scholar 

  32. A. Sharma, J. Appl. Phys. 107, 093918 (2010).

    Article  CAS  Google Scholar 

  33. K. Subramanyam, N. Sreelekha, G. Murali, D. Amaranatha Reddy, and R.P. Vijayalakshmi, Phys. B 454, 86 (2014).

    Article  CAS  Google Scholar 

  34. S. Gupta, V. Ganesan, N. P. Lalla, I. Sulania B. Das, Cond-Mat. Mtrl-Sci. arXiv:1709.05930 (2017).

  35. M. Kuppan, S. Kaleemulla, N. Madhusudhana Rao, N. Sai, M. Rigana Begam, M. Shobana, and Hindawi Publishing Corporation, Adv. Condens. Matter Phys. (2014). https://doi.org/10.1155/2014/284237.

    Article  Google Scholar 

  36. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 23 (2004).

    Article  CAS  Google Scholar 

  37. M. Sharma, S. Kumar, R.N. Aljawfi, S. Dalela, S.N. Dolia, A. Alshoaibi, and P.A. Alvi, J. Electron. Mater. 48, 8181 (2019).

    Article  CAS  Google Scholar 

  38. R. Toy and E. Karathanasis, Nano Materials in Pharmacology, ed. Z.R. Lu and S. Sakuma (New York: Springer Link Books, 2016), p. 113.

    Chapter  Google Scholar 

  39. O. Wiranwetchayan, S. Promnopas, T. Thongtem, A. Chaipanich, and S. Thongtem, Surf. Coat. Technol. 326, 310–315 (2017).

    Article  CAS  Google Scholar 

  40. M.-M. Bagheri-Mohagheghia and N. Shahtahmasebia, Phys. B 403, 2431 (2008).

    Article  CAS  Google Scholar 

  41. V.S. Jahnavi, S.K. Tripathy, and A.V.N. Ramalingeswara, Phys. B 565, 61 (2019).

    Article  CAS  Google Scholar 

  42. K. Bhuyan, A. Bhattacharjee, D.M. Bhuyan, and P.R. Alapa, Int. Adv. Res. J. Sci. Eng. Technol. 3, 10 (2007).

    Google Scholar 

  43. G. Mulongo, J. Mbabazi, and S. Hak-Chol, Res. J. Chem. Sci. 1, 18 (2011).

    CAS  Google Scholar 

  44. G.E. Patil, D.D. Kajale, S.D. Shinde, V.G. Wagh, V.B. Gaikwad, and G.H. Jain, Advancement in Sensing Technology, ed. S.C. Mukhopadhyay, K.P. Jayasundera, and A. Fuchs (Berlin: Springer, 2013), p. 299.

    Chapter  Google Scholar 

  45. N. Bhardwaj, A. Pandey, B. Satpati, M. Tomar, V. Gupta, and S. Mohapatra, Phys. Chem. Chem. Phys. 18, 18846 (2016).

    Article  CAS  Google Scholar 

  46. J. Hays and A. Punnoose, Phys. Rev. B 72, 075203 (2005).

    Article  CAS  Google Scholar 

  47. A. Punnoose, J. Hays, A. Thurber, M.H. Engelhard, R.K. Kukkadapu, C. Wang, V. Shutthanandan, and S. Thevuthasan, Phys. Rev. B 72, 054402 (2005).

    Article  CAS  Google Scholar 

  48. J. Kaur, V. Gupta, R.K. Kotnala, and K.C. Verma, Indian J. Pure Appl. Phys. 50, 57 (2012).

    CAS  Google Scholar 

  49. B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, and T. Paramasivam, RSC Adv. 4, 6141 (2014).

    Article  CAS  Google Scholar 

  50. N. Mazumder, A. Bharati, S. Saha, D. Sen, and K.K. Chattopadhyay, Curr. Appl. Phys. 12, 975 (2012).

    Article  Google Scholar 

  51. M.A. Dar, K.M. Batoo, V. Verma, W.A. Siddiqui, and R.K. Kotnala, J. Alloy. Compd. 493, 553 (2009).

    Article  CAS  Google Scholar 

  52. K. Manikandan, S. Dhanuskodi, A.R. Thomas, N. Maheswari, G. Muralidharan, and D. Sastikumar, Supercapacitor Opt. Limiter. 6, 90559 (2016).

    CAS  Google Scholar 

  53. A.R. Razeghizadeh, L. Zalaghi, I. Kazeminezhad, and V. Rafee, Iran. J. Chem. Chem. Eng. 36, 1 (2017).

    Google Scholar 

  54. K. Sakthiraj, B. Karthikeyan, and K. Balachandrakumar, Int. J. Chem. Technol. Res. 7, 1481 (2014).

    CAS  Google Scholar 

  55. Y. Wang, J.-c. Zhao, S. Zhang, Q.-j. Liu, and X. Wu, J. Non-Cryst. Solids 351, 1477 (2005).

    Article  CAS  Google Scholar 

  56. J. Pal and P. Chauhan, Materials Charcterization 61, 575 (2010).

    Article  CAS  Google Scholar 

  57. S.S. Roy and J. Podder, J. Optoelectron. Adv. Mater. 12, 1479 (2010).

    CAS  Google Scholar 

  58. V. Agrahari, A.K. Tripathi, M.C. Mathpal, A.C. Pandey, S.K. Mishra, R.K. Shukla, and A. Agarwal, J. Mater. Sci. Mater. Electron. 26, 9571 (2015).

    Article  CAS  Google Scholar 

  59. K.G. Saw, N.M. Aznan, F.K. Yam, S.S. Ng, and S.Y. Pung, PLoS ONE 10, 0141180 (2015).

    Google Scholar 

  60. S. Bandyopadhyay, G.K. Paul, and S.K. Sen, Sol. Energy Mater. Sol. Cells 71, 103 (2002).

    Article  CAS  Google Scholar 

  61. A.H. Virpal, N. Kohli, J. Kaur, A. Kaur, J. Singh, S. Sharma, and R.C. Singh, Int. J. Sci. Eng. Res. 8, 16 (2017).

    Google Scholar 

  62. W. Grimesy and R.W. Grimesz, J. Phys. Condens. Matter 10, 3029 (1998).

    Article  Google Scholar 

  63. H.M. El-MallahTju, Acta Phys. Pol. A 122, 174 (2012).

    Article  Google Scholar 

  64. M. Sumaira Mehraj and A. Shahnawaze Ansari, J. Nano Eng. Nano Manuf. 3, 229 (2013).

    Article  CAS  Google Scholar 

  65. V.D. Nithya and R. Kalai Selvan, Phys. B 406, 24 (2011).

    Article  CAS  Google Scholar 

  66. R. Bargougui, A. Oueslati, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, F. Hlel, and S. Ammar, J. Mater. Sci. Mater. Electron. 25, 2066 (2014).

    Article  CAS  Google Scholar 

  67. R. Khan and F. Ming-Hu, Chin. Phys. B 24, 127803-1 (2015).

    Google Scholar 

  68. N. Ahmad, S. Khan, and M.M.N. Ansari, Mater. Res. Expr. 5, 22 (2018).

    Google Scholar 

  69. W.-H. Jung and Hindawi Publishing Corporation, J. Mater. (2013). https://doi.org/10.1155/2013/169528.

    Article  Google Scholar 

  70. J. Liua, C.-G. Duan, W.-G. Yin, W.N. Mei, and R.W. Smith, J. Chem. Phys. 119, 2812 (2003).

    Article  CAS  Google Scholar 

  71. R. Tripathi, A. Dutta, S. Das, and A. Kumar, Appl. Nanosci. 6, 175 (2016).

    Article  CAS  Google Scholar 

  72. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Çaglard, and A. Turuta, RSC Adv. 8, 4634 (2018).

    Article  CAS  Google Scholar 

  73. P. Mohanapriya, N. Padmanathan, R. Pradeepkumar, and K. Rahulan, J. Mater. Sci. Mater. Electron. 27, 13057 (2016).

    Article  CAS  Google Scholar 

  74. V. Agrahari, L.K. Gaur, M.C. Mathpal, and A. Agarwal, J. Nanosci. Nanotechnol. 17, 8752 (2017).

    Article  CAS  Google Scholar 

  75. V. Kumar, S. Uma, and R. Nagarajan, Turk. J. Phys. 38, 450 (2014).

    Article  CAS  Google Scholar 

  76. P. Pascariu, A. Airinei, M. Grigoras, N. Fifere, L. Sacarescu, N. Lupu, and L. Stoleriu, J. Alloy. Compd. 668, 65 (2016).

    Article  CAS  Google Scholar 

  77. V. Agrahari, M.C. Mathpal, S. Kumar, and A. Agarwal, J. Mater. Sci. Mater. Electron. 27, 3053 (2016).

    Article  CAS  Google Scholar 

  78. V. Agrahari, M.C. Mathpal, S. Kumar, M. Kumar, and A. Agarwal, J. Mater. Sci. Mater. Electron. 27, 6020 (2016).

    Article  CAS  Google Scholar 

  79. S. Bhuvana, H.B. Ramalingam, G. Thilakavathi, and K. Vadivel, Mater. Technol. 32, 1 (2016).

    Google Scholar 

  80. N. Nithyaa and N. Victor Jaya, J. Supercond. Novel Magn. 31, 4117 (2018).

    Article  CAS  Google Scholar 

  81. J. Fan, E. Menéndez, M. Guerrero, A. Quintana, E. Weschke, E. Pellicer, and J. Sort, Nanomaterials 7, 348 (2017).

    Article  CAS  Google Scholar 

  82. D.C. Agarwal, U.B. Singh, S. Gupta, R. Singhal, P.K. Kulriya, F. Singh, A. Tripathi, J. Singh, U.S. Joshi, and D.K. Avasthi, Sci. Rep. 9, 6675 (2019).

    Article  CAS  Google Scholar 

  83. H. Bayrakdar, O. Yalçın, S. Vural, and K. Esmer, J. Magn. Magn. Mater. 343, 86 (2013).

    Article  CAS  Google Scholar 

  84. J. Ma and K. Chen, Phys. Lett. A 380, 3313 (2016).

    Article  CAS  Google Scholar 

  85. A.T. Apostolov, I.N. Apostolova, and J.M. Wesselinowa, Phys. Status Solidi B (2018). https://doi.org/10.1002/pssb.201800179.

    Article  Google Scholar 

  86. R. Kumar and M. Kar, Ceram. Int. 42, 6640 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are ever grateful to the management of G.V.P. College of Engineering for supporting us, and we also extend our thanks to Andhra University for providing structural and optical characterization techniques, STIC, Cochin India for providing TEM facilities, Sathyabama University for providing impedance analysis facilities, and IIT Madras for providing VSM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Siva Jahnavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahnavi, V.S., Tripathy, S.K. & Rao, A.V.N.R. Study of the Structural, Optical, Dielectric and Magnetic Properties of Copper-Doped SnO2 Nanoparticles. J. Electron. Mater. 49, 3540–3554 (2020). https://doi.org/10.1007/s11664-020-08028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08028-7

Keywords

Navigation