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In future mobility, the mix of different drive trains will probably be much
more diverse than it is today. According to a large number of scenario anal-
yses, a predominant number of vehicles will continue to be based on the
internal combustion engine (ICE), while an increasing number of hybrid
vehicles are expected. To achieve the required reductions in CO5 emissions it
is necessary to investigate all potential technologies for efficiency improve-
ment. Therefore in this work the potential of waste heat recovery is examined
for conventional and hybrid vehicles. Due to the fact that in an internal
combustion engine approximately 2/3 of the fuel’s chemical energy dissipates
as waste heat, the potential for the recovery of this energy in all ICE driven
powertrains is, in principle, high. The results of this work show that in hybrid
vehicles the highest share of the energy supplied by the fuel is lost in the
exhaust gas. In order to further elaborate this result, we conduct an exem-
plary examination of two comparable vehicles of the compact class within the
worldwide harmonized light duty test cycle. Measurement data from the two
vehicles at the roller dynamometer is used. The result shows that the aver-
aged exhaust gas heat flow of the conventional vehicle is 5.0 kW. For the
hybrid vehicle, driving in the charge sustaining mode, the averaged exhaust
gas heat flow results in 8.1 kW. The comparison shows that the temperature
level of this exhaust gas is even higher than that of the conventional vehicle.
In addition, this work shows that through the higher temperatures, the exergy
in the exhaust gas is higher in hybrid vehicles even if the combustion engine
works with a higher efficiency. In the exemplary comparison the averaged
exergy of the exhaust gas is 3.2 kW for the conventional and 5.7 kW for the
hybrid vehicle. As a result of this work, the high potential for waste heat
recovery in hybrid vehicles could be demonstrated.

Key words: Waste heat recovery, conventional and hybrid powertrains,
thermoelectric generator, power generation, exergetic potential

List of Symbols

¢, Specific heat capacity (J/kg K) @ Heat flow (W)
E  Exergy flow (W) T Temperature (K)
h  Heat of combustion (J/kg) U Internal energy (J)
m V  Volume (dm®)
m  Mass flow (g/s) ne Carnot efficiency (—)
p  Pressure (Pa) ¢ Crank angle (°)
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DSG Dual-clutch gearbox
ICE Internal combustion engine
ORC Organic Rankine cycle
PHEV Plug-in hybrid
TEG Thermoelectric generator
TEM Thermoelectric module
TSI Turbocharged stratified injection
WLTC Worldwide harmonized light duty driving
test cycle
WLTP Worldwide harmonized light duty vehicles
test procedure
Indexes
A Ambient
CO Coolant
F Fuel
HG  Hot gas
I In
Leak Leakage
max Maximum
mi Average
(0] Out
W Wall
INTRODUCTION

One of the major challenges for future automotive
development is to achieve the required reductions of
the CO; emissions. Therefore, it is necessary to
investigate all potential technologies for efficiency
improvement. In an internal combustion engine
(ICE) approximately 2/3 of the fuel’s chemical
energy dissipates as waste heat. In particular, the
exhaust gas offers the highest potential for waste
heat recovery due to its high temperature level. One
of the promising technologies for automotive waste
heat recovery is the use of thermoelectric generators
(TEG). Therefore this technology has been under
investigation for several years at the DLR—Insti-
tute of Vehicle Concepts in Stuttgart.'™

According to the majority of current scenario
analyses, it is to be expected that the majority of
new registrations in the future will continue to be
based on an internal combustion engine. It is
assumed that in 2030 this share will account for
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more than 80% and in 2040 more than 70% of new
registrations. In addition, an increasing number of
these vehicles with ICEs will be hybrid vehicles.5”
According to Ref. 7, which gives a summary of the
literature, global car sales in 2030 are expected to be
about 150% of the sales in 2015. This leads to the
prediction that, in absolute terms, more vehicles
with combustion engines will be sold in 2030 than
are sold today.”

The aim of this paper is to consider future
influences of development in the vehicle sector of
potential waste heat recovery. In particular, the
difference between conventional and hybrid vehicles
was investigated from this standpoint.

REFERENCE VEHICLES, DYNAMIC
DRIVING CONDITIONS
AND MEASUREMENT DATA

Reference Vehicles

In order to compare the available waste heat flows
of the different vehicle concepts, two petrol-powered
reference vehicles of the compact class were
selected. Figure 1 shows the main characteristics
of the chosen reference vehicles.

To represent a common conventional vehicle, the
Volkswagen Golf VII with a turbocharged engine
with 1.2 L. displacement was selected. As a hybrid
vehicle, the Opel Ampera (Chevrolet Volt) with
1.4 L displacement was chosen. Both vehicles are
shown in Fig. 2, while they are being measured on
the roller dynamometer test bench of the DLR—In-
stitute of vehicle concepts in Stuttgart.

The Opel Ampera with its power train as a power-
split hybrid represents the majority of current plug-
in hybrid electrical vehicles (PHEV). Other compa-
rable examples of power-split hybrids are Mercedes
C 350e, BMW 330e, Volkswagen Golf GTE and
Toyota Prius. The propulsion system of the Opel
Ampera is shown in Fig. 3.%

The kinematic architecture of the power-split
PHEYV has a planetary gear set and three clutches.
The clutches connect and disconnect the power
sources in order to realize different operating
modes. To compare the hybrid vehicle with the
conventional vehicle, the hybrid vehicle was oper-
ated in the charge sustaining mode. In this mode,
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Fig. 1. Main characteristics of the reference vehicles.
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Fig. 2. Reference vehicles at the roller dynamometer test bench.
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Fig. 3. Propulsion system of the Opel Ampera—Kinematic architecture of the power-split PHEV. (Reprinted with permission of Ref. 8).
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Fig. 4. Internal combustion engine of the Opel Ampera and its operating characteristics, shown in a torque-speed diagram. (Reprinted with
permission of Ref. 8)
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the cycle is started with an empty traction battery,
so that the required energy must be supplied by the
combustion engine.

In hybrid vehicles, the combustion engine is
operated at higher load points than in conventional
vehicles. At these higher load points, the combus-
tion engine has higher efficiencies. As shown in
Fig. 4 (orange curve), the combustion engine of the
Opel Ampera is operated at various high-load
points. Figure 4 also shows that the specific fuel
consumption is lower at the high operating points.

Dynamic Driving Conditions

Dynamic driving conditions were chosen in order
to show a meaningful comparison of the two propul-
sion systems. In particular, the worldwide harmo-
nized light duty driving test cycle (WLTC) was
selected as part of the related test procedure
WLTP.?

As shown in Fig. 5, the used WLTC is 1800 s long
and has an average speed of 46.5 km/h and a top
speed of 131 km/h. For the following comparison,
the vehicles were measured at 20°C ambient tem-
perature. The dynamic velocity profile in Fig. 6
shows that a very low load level is required in the
first third. A high speed is only driven in the last
323 s of the cycle, in the so-called extra high part.

The velocity profile and the vehicle mass mainly
determine the energy required by the propulsion
system of the vehicle. As shown in Fig. 1, the mass
of the hybrid vehicle is 400 kg higher.
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Fig. 5. Dynamic driving conditions of the WLTP driving cycle.

Measurement Data from the Roller
Dynamometer

For the following comparison, measurement data
from the roller dynamometer test bench were used.
The measured fuel consumption for both vehicle
concepts is shown in Fig. 1. The value of the hybrid
vehicle marked with * refers to the charge sustain-
ing mode.

The exhaust gas temperatures were measured at
the point after the catalytic converter. The mea-
surement position used for the Opel Ampera is
shown in Fig. 7.

Figure 8 shows the measured exhaust gas tem-
perature and mass flow for the Opel Ampera. It can
also be seen from the exhaust measurement data
that the combustion engine operates in a hybrid
mode. For example, in the first third of the cycle, the
exhaust gas mass flow shows that the combustion
engine does not cover the low load points as in
conventional drive trains. When the combustion
engine is used, it varies between different high load
points. In these phases, more electrical energy is
converted from the fuel and the phases with low
load are driven purely electrically. Finally, with the
hybrid vehicle in charge sustaining mode, the
energy required to move the vehicle within the
specified driving cycle is converted from fuel. The
difference is that the combustion engine works only
at high load points as described above.

POTENTIAL ANALYSIS FOR WASTE HEAT
RECOVERY IN VEHICLE APPLICATIONS

In this section, the measured data of the exhaust
gas temperatures and mass flows will be compared
for the conventional and hybrid vehicles, with the
aim of analyzing the potential for waste heat
recovery, e.g. with the aid of thermoelectric
generators.

Figure 9 shows a comparison of the exhaust gas
temperatures and mass flows within the WLTC. It
can be seen that the hybrid vehicle has significantly
higher exhaust gas temperatures. On the other
hand, the maximal reached exhaust gas mass flows
over the cycle are slightly lower.
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Fig. 6. Velocity profile of the WLTP driving cycle'®.
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Fig. 7. Measurement position of the exhaust gas temperature after the catalytic converter of the Opel Ampera.
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Fig. 8. Measurement data of the exhaust gas mass flow and temperature of the Opel Ampera.
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Fig. 9. Comparison of the exhaust gas mass flow and temperature
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between the two reference vehicles within WLTC.

Analysis of the Heat Flow

The calculation of the exhaust gas heat flow (QHG)
includes the exhaust gas mass flow (mpg) and
temperature (T'yg) and is carried out according to
Eq. 1.

Quc = %@G'mm} “(Tug — Ta). (1)

Fig. 10. Heat flow over the exhaust gas temperature for both
reference vehicles within the WLTC.

However, in addition to the heat flow, the tem-
perature level is important for an efficient use of the
waste heat. Therefore, Fig. 10 shows the exhaust
gas heat flow over the exhaust gas temperature.

It can be seen that the hybrid vehicle has higher
heat flows in the exhaust gas than the conventional
vehicle. In addition, these higher heat flows are still
at a higher temperature level.
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Fig. 11. Exergy flow in the exhaust gas of both reference vehicles within the WLTC.

Analysis of the Exergetic Potential

In order to include the higher temperature level of
the exhaust heat flows in the evaluation, the exergy

flows (Eng) are calculated according to Eq. 2 below.

Thereby the exhaust heat (Quc) flow is multiplied
with the Carnot efficiency ().

EHG = QHG “Ne- (2)

The Carnot efficiency is calculated according to
Eq. 3 from the temperature level of the exhaust gas
(Tae) to ambient (7).

’70:1—T—HG- (3)

Thus the exergy flow represents the entire poten-
tial for a waste heat recovery system. For example,
the conversion efficiency of a thermoelectric gener-
ator (TEG) or an organic Rancine cycle (ORC) also
depends on the Carnot efficiency.

Figure 11 shows the exergy flows of the two
vehicle concepts over time in the WLTC. This
clearly reflects the fact that the combustion engine
in the conventional vehicle operates at many partial
load points, resulting in low exergy flows in the first
part of the cycle. In contrast, the hybrid vehicle
shows significantly higher exergy flows, especially
in the first part of the cycle. These higher exergy
flows occur in the hybrid vehicle over a shorter
period of time.

An analysis of the absolute frequency of the
different exergy flows is shown in Fig. 12. The
absolute frequency was calculated over the time of
the WLTC by a summation of the amount for each
exergy flow level. Figure 12 shows that in conven-
tional vehicles the low exergy flows occur with a
very high absolute frequency. The higher exergy
flows occur only rarely. On a closer look at Fig. 11, it
can also be seen that in the conventional vehicle the
high exergy flows occur only in the last part of the
cycle (extra high part).
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Fig. 12. Distribution of the absolute frequency of exergy flows—both
reference vehicles within the WLTC.

QHG,max QHG,mi ¢ max M mi E. XHGmax E. XHG mi
[kw] [kw] [-] [ [kw] [kw]
VW Golf VI 339 5 0.697 0.589 23.6 3.2
Opel Ampera 381 8.1 0.737 0.584 281 5.7

Fig. 13. Results of the exergetic potential analysis within the WLTC.

With the hybrid vehicle, on the other hand,
medium to large exergy flows occur with a high
absolute frequency. This can be explained by the
fact that the combustion engine is operated at
higher load points.

The maximum and average values within the
WLTC are shown as summary of the analysis in
Fig. 13. The average heat flow of the hybrid vehi-
cle’s exhaust gas within the WLTC is about 62%
higher. Figure 1 shows that the measured fuel
consumption of the hybrid vehicle is about 20%
higher. This value must be subtracted when com-
paring the potential. Nevertheless, the average heat
flow in the exhaust gas of the hybrid vehicle is still
significantly higher than in the conventional vehi-
cle. An explanation for this fact will be given in the
following section. In addition, the analysis has
shown that the exhaust gas temperatures are
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higher in the hybrid vehicle. As a result, the
maximum Carnot efficiency is also higher than in
the conventional vehicle. However, the average
Carnot efficiency in the WLTC is not significantly
higher, since the longer standstill phases of the
combustion engine reduce it.

Nevertheless, the average exergy flow calculated
from the exhaust gas heat flow and the Carnot
efficiency is a remarkable 78% higher in the hybrid
vehicle. This is due to the fact that in the transient
course of the cycle, the high Carnot efficiencies
occur together with high exhaust gas heat flows.

ENERGY FLOWS IN CONVENTIONAL
AND HYBRID VEHICLES

Here, an explanation will be given for the fact
that, in the comparison of the measurement data
from the roller dynamometer, the exhaust heat
flows are higher in the hybrid vehicle. Even though
in this vehicle concept the combustion engine is
operated with a higher efficiency, more heat is lost
in the exhaust gas. The explanation shall be given
generally concerning the thermodynamic relations
within an internal combustion engine. Therefore
the first law of thermodynamics according to Ref. 11
is mentioned in Eq. 4. In this context, the mechan-
ical work, the wall heat losses and the exhaust gas
enthalpy will be discussed.

dv dQ F dQW dm I
P+ -0 yp L
do do do do
——
Mechanical Worl:1 Wall heaé losses
mo Meak
ho 0 _p ek
+ 0 do 0 do
Exhaust gas enthalpy
dU
-5 (4)
¢

Focusing on the mechanical work, we see that this
is higher in the hybrid vehicle because the internal
combustion engine is operated at a higher load
point. Figure 4 shows that at higher load points the
ICE has a lower specific fuel consumption and thus
a higher efficiency. On the other hand, the
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Fig. 14. Share of wall heat losses in relation to the supplied fuel
energy and as a function of the load and engine speed. (Data used
from Ref. 11)
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measured values in the exhaust tract show, as
already described, higher exhaust gas enthalpy
flows.

The first law of thermodynamics is balanced by
the fact that the wall heat losses are significantly
lower.

Figure 14 shows the wall heat losses exemplary
for an internal combustion engine as a function of
the engine speed and load according to Ref. 11 It can
be seen that in idling and at a medium speed around
26% of the energy supplied by the fuel () is lost in
the form of wall heat (Qw). In contrast to this, at full
load only 12% of the energy supplied by the fuel are
lost as wall heat. Thus in this example the differ-
ence in wall heat losses is 14%.

Beyond this general example, the measurement
data of the two vehicles in the WLTC will be used
for the next step. The measured exhaust gas
temperatures, mass flows, speeds and torques of
the combustion engine are used. With the help of
this data, the energy flows in the conventional and
hybrid vehicles were analysed. The mechanical
work of the combustion engine was calculated from
the torque and the speed. The calculation of the
exhaust gas enthalpy is based on Eq. 3 with the
measured exhaust gas temperatures behind the
catalytic converter. In order to consider the decrease
in temperature until the measuring point, the
exhaust gas temperature was increased by a max-
imum of 100 K with a time-dependent compensation
to calculate the exhaust gas temperature directly
after the engine. For the calculation of the wall heat

Mechanical work

Exhaust gas enthalpy

Fig. 15. Energy flow diagram of the conventional vehicle in WLTC
average.

Mechanical work
Exhaust gas enthalpy

Wall heat losses
mmmmz:i

Fig. 16. Energy flow diagram of the hybrid vehicle in WLTC average
and operated in the charge sustaining mode.
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losses, a function was formed in dependence on load
and speed according to Fig. 14, and thus the wall
heat losses were calculated for both vehicles.

Figures 15 and 16 summarize the average values
in the WLTC. The converted fuel energy, which is
calculated from the measured fuel consumption, is
used as 100%. The miscellaneous arrow represents
the losses neglected in this consideration. These
additional losses are based on convection and radi-
ation to the environment, as well as blowby and
other heat flows into the coolant. The adjustment
was made at this point in order to be able to present
a general comparison of the two vehicle concepts
based on their three main energy flows.

As a result, Figs. 15 and 16 show that hybrid
vehicles lose their highest percentage of waste heat
flows via the exhaust system. In relation to the
supplied fuel energy, the wall heat losses in the
hybrid powertrain are lower, and thus the waste
heat in the exhaust tract is higher by 7 percentage
points. Also, the efficiency of the combustion engine
is 4 percentage points higher in average over the
cycle. The higher efficiency of the combustion
engine and the higher waste heat flows in the
exhaust gas are related. Both result from the fact
that the combustion engine is operated at a higher
load point. Furthermore, as described in the previ-
ous chapter, the exhaust gas temperatures in hybrid
vehicles are higher, which means that the exergetic
potential is higher in addition to the higher waste
heat flows.

The higher potential for waste heat recovery in
hybrid vehicles described here results from the fact
that the combustion engine is operated at higher
load points. This is the case not only in hybrid
powertrains. Many other efficiency measures also
result in an increase in the load point of the
combustion engine, such as down-sizing or cylinder
deactivation. This means that, with a wide range of
efficiency measures on combustion engines, there is
also an accompanying higher potential for waste
heat recovery.

CONCLUSIONS

A high potential for waste heat recovery in future
vehicles has been shown in this work. In many
efficiency measures, the load point of combustion
engines is increased in order to improve the effi-
ciency. This is used, for example, in hybrid drive
trains as well as for down-sizing and cylinder
deactivation. This work demonstrates that at a
higher load point the combustion engine has a
higher efficiency and, at the same time, the heat
losses in the exhaust gas are higher. This has been
explained thermodynamically by the fact that the
wall heat losses are lower at higher operating
points.

In a comparison between two vehicles of the
compact class, this relationship was proven on the
basis of measurement data from the roller

dynamometer test bench. A conventional vehicle
(Volkswagen Golf) and a hybrid vehicle (Opel
Ampera) were compared. The hybrid vehicle with
its as a power-split hybrid power train represents
the majority of current plug-in hybrid electrical
vehicles (PHEV). The comparison shows that the
measured waste heat flow of the hybrid vehicle
during operation in the charge sustaining mode is
62% higher. In an additional analysis it was shown
that not only the exhaust heat losses themselves are
higher in hybrid vehicles, also the temperature level
is higher. This results in higher exergy flows in the
hybrid vehicle. The analysis showed that the aver-
aged exergy flow within the WLTC is 78% higher for
the hybrid vehicle. Accordingly, the potential for
waste heat recovery in hybrid vehicles is about 1.8
times higher than in conventional vehicles. Fur-
thermore, an additional heat input from the exhaust
system can lead to a high increase in efficiency and
comfort due to better thermal management. These
effects can be even higher in hybrid vehicles than in
conventional vehicles. In order to limit climate
change, all promising technologies must be used.
As shown, the recovery of waste heat, for example
through a thermoelectric generator, can make a
decisive contribution in the future.
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