Skip to main content
Log in

Sintering Behavior and Microwave Dielectric Properties of LiF-Doped Li2Mg3Ti0.95(Mg1/3Ta2/3)0.05O6 Ceramics for LTCC Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low-firing 1–4 wt.% LiF-doped Li2Mg3Ti0.95(Mg1/3Ta2/3)0.05O6 (LMTT) ceramics were synthesized via solid state reaction method. The effects of LiF on the phase composition, sintering behavior as well as microwave dielectric properties were systematically discussed. Adding LiF additives could lower the sintering temperature to 950°C for LMTT ceramics. X-ray powder diffraction analysis indicated that all the compounds prepared in this work have cubic symmetry with space group Fm-3m. Typically, LMTT with 2 wt.% LiF exhibited a dense uniform microstructure and optimized microwave dielectric properties of εr ∼ 15.1 (± 0.2), Q·f ∼ 60,100 GHz (at 8.3 GHz), and τf ∼ − 20.45 ppm/°C at 950°C. In addition, the good chemical compatibility with Ag electrode made LMTT-2 wt.% LiF ceramic an appropriate candidate for low temperature co-fired ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Sebastian and H. Jantunen, Int. Mater. Rev. 53, 57 (2008).

    Article  CAS  Google Scholar 

  2. M. Rakhi and G. Subodh, J. Eur. Ceram. Soc. 38, 4962 (2018).

    Article  CAS  Google Scholar 

  3. M.T. Sebastian, R. Ubic, and H. Jantunen, Int. Mater. Rev. 60, 392 (2015).

    Article  Google Scholar 

  4. D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, and I.M. Reaney, J. Mater. Chem. C 5, 10094 (2017).

    Article  CAS  Google Scholar 

  5. T.L. Tang, W.S. Xia, B. Zhang, Y. Wang, M.X. Li, and L.W. Shi, J. Mater. Sci. Mater. Electron. 30, 15293 (2019).

    Article  CAS  Google Scholar 

  6. W.S. Xia, S.B. Zhang, T.L. Tang, Y. Wang, and L.W. Shi, Physica B 572, 148 (2019).

    Article  CAS  Google Scholar 

  7. L.X. Pang and D. Zhou, J. Am. Ceram. Soc. 102, 2278 (2019).

    Article  CAS  Google Scholar 

  8. Y.H. Zhang and H.T. Wu, J. Am. Ceram. Soc. 102, 4092 (2019).

    Article  CAS  Google Scholar 

  9. Y.H. Zhang, J.J. Sun, N. Dai, Z.C. Wu, H.T. Wu, and C.H. Yang, J. Eur. Ceram. Soc. 39, 1127 (2019).

    Article  CAS  Google Scholar 

  10. J.X. Bi, C.F. Xing, C.H. Yang, and H.T. Wu, J. Eur. Ceram. Soc. 38, 3840 (2018).

    Article  CAS  Google Scholar 

  11. Y. Wang, T.L. Tang, J.T. Zhang, W.S. Xia, and L.W. Shi, J. Alloys Compd. 778, 576 (2019).

    Article  CAS  Google Scholar 

  12. Y. Wang, S.B. Zhang, T.L. Tang, W.S. Xia, and L.W. Shi, Mater. Lett. 231, 1 (2018).

    Article  Google Scholar 

  13. W.S. Xia, L.Y. Zhang, Y. Wang, S.E. Jin, Y.P. Xu, Z.W. Zuo, and W. Shi, J. Mater. Sci. Mater. Electron. 27, 11325 (2016).

    Article  CAS  Google Scholar 

  14. S. George and M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164 (2010).

    Article  CAS  Google Scholar 

  15. S. George and M.T. Sebastian, J. Eur. Ceram. Soc. 30, 2585 (2010).

    Article  CAS  Google Scholar 

  16. Y.W. Tseng, J.Y. Chen, Y.C. Kuo, and C.L. Huang, J. Alloys Compd. 509, L308 (2011).

    Article  CAS  Google Scholar 

  17. Z.F. Fu, P. Liu, J.L. Ma, X.M. Chen, and H.W. Zhang, Mater. Lett. 164, 436 (2016).

    Article  CAS  Google Scholar 

  18. H.C. Xiang, C.C. Li, C.Z. Yin, C.Z. Tang, and L. Fang, Ceram. Int. 44, 5817 (2018).

    Article  CAS  Google Scholar 

  19. P. Zhang, H. Xie, Y.G. Zhao, and M. Xiao, J. Alloys Compd. 689, 246 (2016).

    Article  CAS  Google Scholar 

  20. H.L. Pan, Y.X. Mao, Y.K. Yang, Y.W. Zhang, and H.T. Wu, Mater. Res. Bull. 105, 296 (2018).

    Article  CAS  Google Scholar 

  21. S. George and M.T. Sebastian, Int. J. Appl. Ceram. Technol. 8, 1400 (2011).

    Article  CAS  Google Scholar 

  22. Y. Wang, L.Y. Zhang, S.B. Zhang, W.S. Xia, and L.W. Shi, Mater. Lett. 219, 233 (2018).

    Article  CAS  Google Scholar 

  23. W.S. Xia, L.Y. Zhang, Y. Wang, J.T. Zhang, R.R. Feng, and L.W. Shi, J. Mater. Sci. Mater. Electron. 28, 18437 (2017).

    Article  CAS  Google Scholar 

  24. W.S. Xia, F. Jin, M. Wang, X. Wang, G.Y. Zhang, and L.W. Shi, J. Mater. Sci. Mater. Electron. 27, 1100 (2016).

    Article  CAS  Google Scholar 

  25. A. Rose, B. Masin, H. Sreemoolanadhan, K. Ashok, and T. Vijayakumar, Appl. Surf. Sci. 449, 96 (2018).

    Article  CAS  Google Scholar 

  26. P. Zhang, K.X. Sun, L. Lu, and M. Xiao, J. Alloy Compd. 765, 1209 (2018).

    Article  CAS  Google Scholar 

  27. F. Fu, J.L. Ma, and P. Liu, J. Alloys Compd. 752, 354 (2018).

    Article  CAS  Google Scholar 

  28. D. Zhu, F.T. Kong, and X.S. Ma, Ceram. Int. 44, 20006 (2018).

    Article  CAS  Google Scholar 

  29. F. Yuan, L. Gan, F.F. Ning, S.B. An, J. Jiang, and T.J. Zhang, Ceram. Int. 44, 20566 (2018).

    Article  CAS  Google Scholar 

  30. E. Courtney, IEEE Trans. Microw. Theory Technol. 18, 476 (1970).

    Article  Google Scholar 

  31. W. Hakki and P.D. Coleman, IRE Trans. Microw. Theory Technol. 8, 402 (1960).

    Article  Google Scholar 

  32. V.B. Braginsky, V.S. Ilchenko, and K.S. Bagdassarov, Phys. Lett. A 120, 300 (1987).

    Article  Google Scholar 

  33. V.L. Gurevich and A.K. Tagantsev, Adv. Phys. 40, 719 (1991).

    Article  CAS  Google Scholar 

  34. J.D. Breeze, J.M. Perkins, D.W. McComb, and N.M. Alford, J. Am. Ceram. Soc. 92, 671 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Xu, H., Yang, Y. et al. Sintering Behavior and Microwave Dielectric Properties of LiF-Doped Li2Mg3Ti0.95(Mg1/3Ta2/3)0.05O6 Ceramics for LTCC Applications. J. Electron. Mater. 49, 773–779 (2020). https://doi.org/10.1007/s11664-019-07803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07803-5

Keywords

Navigation