Skip to main content
Log in

Calculations of High-Frequency Noise Spectral Density of Different CdTe Metal–Semiconductor–Metal Schottky Contacts

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An analytical approach for the study of high-frequency noise in different CdTe Schottky contacts is proposed. The model takes into account the fluctuations from three primary current sources: the leakage current through the Schottky barrier, the fluctuations of surface charge current, and the excess carrier density produced by light illumination (photocurrent). In particular, the current densities related to the perturbation of the electric field inside the whole structure and the free carrier fluctuations are used to determine the detectivity in the Giga and the Terahertz frequencies. It is shown that the current spectral density exhibits a resonance peak near 109 Hz due to the free carrier concentration. The excess carrier fluctuations show a negligible contribution to the total spectral current density. It was found that the Au-S-Au structure presents a high detectivity due to their low noise level of the leakage current. These findings and the detailed model describing the current fluctuation processes in the detector is crucial for the development of detection technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Musiienko, R. Grill, P. Moravec, P. Fochuk, I. Vasylchenko, H. Elhadidy, and L. Šedivý, Phys. Rev. Appl. 10, 014019 (2018).

    Article  CAS  Google Scholar 

  2. M. Niraula, K. Yasuda, Y. Nakanishi, K. Uchida, T. Mabuchi, Y. Agata, and K. Suzuki, J. Electron. Mater. 33, 645 (2004).

    Article  CAS  Google Scholar 

  3. T. Fanning, M.B. Lee, L.G. Casagrande, D. Di Marzio, and M. Dudley, J. Electron. Mater. 22, 943 (1993).

    Article  CAS  Google Scholar 

  4. X. Xie, J. Xu, and X.-C. Zhang, Opt. Lett. 31, 978 (2006).

    Article  CAS  Google Scholar 

  5. M. Schall, M. Walther, and P. Uhd Jepsen, Phys. Rev. B 64, 094301 (2001).

    Article  Google Scholar 

  6. A. Rice, Y. Jin, X.F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, Appl. Phys. Lett. 64, 1324 (1994).

    Article  CAS  Google Scholar 

  7. A. Musiienko, R. Grill, J. Pekárek, E. Belas, P. Praus, J. Pipek, V. Dědič, and H. Elhadidy, Appl. Phys. Lett. 111, 082103 (2017).

    Article  Google Scholar 

  8. L. Verger, J.P. Bonnefoy, F. Glasser, and P. Ouvrier-Buffet, J. Electron. Mater. 26, 738 (1997).

    Article  CAS  Google Scholar 

  9. S.S. Yoo, B. Rodricks, S. Sivananthan, J.P. Faurie, and P.A. Montano, J. Electron. Mater. 25, 1306 (1996).

    Article  CAS  Google Scholar 

  10. C. Szeles, Phys. Stat. Sol. (B) 241, 783 (2004).

    Article  CAS  Google Scholar 

  11. L.A. Kosyachenko, T. Aoki, C.P. Lambropoulos, V.A. Gnatyuk, S.V. Melnychuk, V.M. Sklyarchuk, E.V. Grushko, O.L. Maslyanchuk, and O.V. Sklyarchuk, J. Appl. Phys. 113, 054504 (2013).

    Article  Google Scholar 

  12. H. Elhadidy, V. Dedic, J. Franc, and R. Grill, J. Phys. D Appl. Phys. 47, 055104 (2014).

    Article  Google Scholar 

  13. A. Cola and I. Farella, Appl. Phys. Lett. 94, 102113 (2009).

    Article  Google Scholar 

  14. P. Shiktorov, E. Starikov, V. Gruzinskis, L. Reggiani, L. Varani, and J.C. Vaissie, IEEE Electron Device Lett. 26, 2 (2005).

    Article  Google Scholar 

  15. F.Z. Mahi, A. Helmaoui, L. Varani, P. Shiktorov, E. Starikov, and V. Gruzhinskis, Phys. B 403, 3765 (2008).

    Article  CAS  Google Scholar 

  16. A. Boukhenoufa, C. Cordier, L. Pichon, and B. Cretu, Thin Solid Films 515, 7556 (2007).

    Article  CAS  Google Scholar 

  17. P. Shiktorov, E. Starikov, V. Gruzinskis, S. Pérez, T. Gonzalez, L. Reggiani, L. Varani, and J.C. Vaissie, IEEE Electron Device Lett. 25, 1 (2004).

    Article  CAS  Google Scholar 

  18. L. Ciura, A. Kolek, A. Kębłowski, D. Stanaszek, A. Piotrowski, W. Gawron, and J. Piotrowski, Semicond. Sci. Technol. 31, 035004 (2016).

    Article  Google Scholar 

  19. K. Jóźwikowski, A. Jóźwikowska, and A. Martyniuk, J. Electron. Mater. 45, 4769 (2016).

    Article  Google Scholar 

  20. G. Ferrari, M. Sampietro, and G. Bertuccio, Appl. Phys. Lett. 83, 2450 (2003).

    Article  CAS  Google Scholar 

  21. O. Sik, L. Grmela, H. Elhadidy, V. Dědič, J. Sikula, P. Grmela, J. Franc, P. Skarvada, and V. Holcman, JINST 8, C06005 (2013).

    Article  Google Scholar 

  22. O. Sik, P. Skarvada, L. Grmela, H. Elhadidy, M. Vondra, J. Sikula, and J. Franc, Phys. Scr. 2013, 014064 (2013).

    Article  Google Scholar 

  23. A. Andreev, L. Grmela, P. Moravec, G. Bosman, and J. Sikula, Semicond. Sci. Technol. 25, 055016 (2010).

    Article  Google Scholar 

  24. M.A. Kinch, C.-F. Wan, and J.D. Beck, J. Electron. Mater. 34, 928 (2005).

    Article  CAS  Google Scholar 

  25. P. Schauer, J. Sikula, and P. Moravec, Microelectron. Reliab. 41, 431 (2001).

    Article  Google Scholar 

  26. C.T. Elliott, N.T. Gordon, R.S. Hall, T.J. Phillips, C.L. Jones, and A. Best, J. Electron. Mater. 26, 643 (1997).

    Article  CAS  Google Scholar 

  27. M. Sampietro, G. Ferrari, and G. Bertuccio, J. Appl. Phys. 87, 7583 (2000).

    Article  CAS  Google Scholar 

  28. H. Elhadidy, F.Z. Mahi, J. Franc, A. Musiienko, V. Dedic, and O. Schneeweiss, Thin Solid Films 645, 340 (2018).

    Article  CAS  Google Scholar 

  29. H. Elhadidy, R. Grill, J. Franc, O. Šik, P. Moravec, and O. Schneeweiss, Solid State Ionics 278, 20 (2015).

    Article  CAS  Google Scholar 

  30. H. Elhadidy, J. Sikula, and J. Franc, Semicond. Sci. Technol. 27, 015006 (2011).

    Article  Google Scholar 

  31. H.X. Jiang, G. Brown, and J.Y. Lin, J. Appl. Phys. 69, 6701 (1991).

    Article  CAS  Google Scholar 

  32. B. Jensen, J. Phys. Chem. Solid. 34, 2235 (1973).

    Article  CAS  Google Scholar 

  33. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977).

    Article  CAS  Google Scholar 

  34. V. Dědič, J. Franc, H. Elhadidy, R. Grill, E. Belas, P. Moravec, J. Zázvorka, and P. Höschl, J. Inst. 8, C01008 (2013).

    Google Scholar 

  35. R. Grill, J. Franc, H. Elhadidy, E. Belas, Š. Uxa, M. Bugár, P. Moravec, and P. Hoschl, IEEE Trans. Nucl. Sci. 59, 2383 (2012).

    Article  CAS  Google Scholar 

  36. J. Kubat, H. Elhadidy, J. Franc, R. Grill, E. Belas, P. Hoschl, and P. Praus, IEEE Trans. Nucl. Sci. 56, 1706 (2009).

    Article  CAS  Google Scholar 

  37. H. Elhadidy, J. Franc, E. Belas, P. Hlidek, P. Moravec, R. Grill, and P. Hoschl, J. Electron. Mater. 37, 1219 (2008).

    Article  CAS  Google Scholar 

  38. J. Franc, H. Elhadidy, V. Babentsov, A. Fauler, and M. Fiederle, J. Mater. Res. 21, 1025 (2006).

    Article  CAS  Google Scholar 

  39. H. Elhadidy, J. Franc, V. Dedic, and A. Musiienko, JINST 13, C10001 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the Project CEITEC 2020 (Project No. LQ1601) and by the Academy of Sciences of the Czech Republic (Project No. RVO:68081723) and by the Grant Agency of Czech Republic (GACR), Project 102-18-06818S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Elhadidy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhadidy, H., Mahi, F.Z., Franc, J. et al. Calculations of High-Frequency Noise Spectral Density of Different CdTe Metal–Semiconductor–Metal Schottky Contacts. J. Electron. Mater. 48, 7806–7812 (2019). https://doi.org/10.1007/s11664-019-07612-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07612-w

Keywords

Navigation