Skip to main content
Log in

Plasma Etching of n-Type 4H-SiC for Photoconductive Semiconductor Switch Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Photoconductive semiconductor switches (PCSS) fabricated on high-purity semi-insulating 4H-SiC substrates (000\( \bar{1} \)) are capable of switching high currents in compact packages with long device lifetimes. A heavily doped n-type SiC epitaxial layer of appropriate thickness is required to form low-resistance ohmic contacts with these devices. In addition, to enhance the performance of the PCSSs, the SiC surface between the ohmic contacts must be extremely smooth. We report a chlorine-based, inductively coupled plasma reactive ion-etching process yielding n-type SiC epitaxial layers with the required smoothness. The rate of etching and post-etching surface morphology were dependent on plasma conditions. We found that the surface smoothness of epitaxial layers can be improved by including BCl3 in the argon–chlorine mixture. The optimum etching process yielded very smooth surfaces (∼0.3 nm RMS) at a relatively high rate of etching of ∼220 nm/min. This new fabrication approach significantly reduced the on-state resistance of the PCSS device and improved its durability of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Levinshtein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials (New York: Wiley, 2001), pp. 93–148.

    Google Scholar 

  2. S. Doǧan, A. Teke, D. Huang, H. Morkoç, C.B. Roberts, J. Parish, B. Ganguly, M. Smith, R.E. Myers, and S.E. Saddow, Appl. Phys. Lett. 82, 18 (2003).

    Google Scholar 

  3. C. James, C. Hettler, and J. Dickens, IEEE Electron Device Lett. 58, 508 (2011).

    Article  Google Scholar 

  4. J.W. Bragg, W. Sullivan III, D. Mauch, A. Neuber, and J. Dickens, Rev. Sci. Instrum. 84, 54703 (2013).

    Article  Google Scholar 

  5. W.W. Sullivan III, C. Hettler, and J. Dickens, Mater. Sci. Forum 717–720, 813 (2012).

    Article  Google Scholar 

  6. K. Xie, J.R. Flemish, J.H. Zhao, W.R. Buchwald, and L. Casas, Appl. Phys. Lett. 67, 368 (1995).

    Article  Google Scholar 

  7. P. Leerungnawarat, D.C. Hays, H. Cho, S.J. Pearton, R.M. Strong, C.-M. Zetterling, and M. Ostling, J. Vac. Sci. Technol. B 17, 2050 (1999).

    Article  Google Scholar 

  8. F.A. Khan, L. Zhou, V. Kumar, and I. Adesida, J. Electrochem. Soc. 149, G420 (2002).

    Article  Google Scholar 

  9. A. Tasaka, K. Takahashi, K. Tanaka, K. Shimizu, K. Mori, S. Tada, W. Shimizu, T. Abe, M. Inaba, Z. Ogumi, and T. Tojo, J. Vac. Sci. Technol. A 20, 1254 (2002).

    Article  Google Scholar 

  10. A. Tasaka, H. Yamada, T. Nonoyama, T. Kanatani, Y. Kotaka, T. Tojo, and M. Inaba, J. Vac. Sci. Technol. A 27, 1369 (2009).

    Article  Google Scholar 

  11. L. Jiang, N.O.V. Plank, M.A. Blauw, R. Cheung, and E. van der Drift, J. Phys. D Appl. Phys. 37, 1809 (2004).

    Article  Google Scholar 

  12. A. Kathalingam, M.-R. Kim, Y.-S. Chae, S. Sudhakar, T. Mahalingam, and J.-K. Rhee, Appl. Surf. Sci. 257, 3850 (2011).

    Article  Google Scholar 

  13. K. Zhu, V. Kuryatkov, B. Borisov, G. Kipshidze, S.A. Nikishin, H. Temkin, and M. Holtz, Appl. Phys. Lett. 81, 4688 (2002).

    Article  Google Scholar 

  14. K. Zhu, V. Kuryatkov, B. Borisov, J. Yun, G. Kipshidze, S.A. Nikishin, H. Temkin, D. Aurongzeb, and M. Holtz, J. Appl. Phys. 95, 4635 (2004).

    Article  Google Scholar 

  15. V. Kuryatkov, B. Borisov, J. Saxena, S.A. Nikishin, H. Temkin, S. Patibandla, L. Menon, and M. Holtz, J. Appl. Phys. 97, 073302 (2005).

    Article  Google Scholar 

  16. S. Nikishin, B. Borisov, V. Kuryatkov, A. Usikov, V. Dmitriev, and M. Holtz, Proc. SPIE 6121, 1–61210T (2006).

    Google Scholar 

  17. L. Zhang, L.F. Lester, R.J. Shul, C.G. Willison, and R.P. Leavitt, J. Vac. Sci. Technol. B 17, 965 (1999).

    Article  Google Scholar 

  18. J. Sun and J. Kosel, Microelectron. Eng. 98, 222 (2012).

    Article  Google Scholar 

  19. E. Meeks, P. Ho, A. Ting, and R.J. Buss, J. Vac. Sci. Technol. A 16, 2227 (1998).

    Article  Google Scholar 

  20. D.S. Rawal, B.K. Sehgal, R. Muralidharan, H.K. Malik, and A. Dasgupta, Vacuum 86, 1844 (2012).

    Article  Google Scholar 

  21. W.W. Sullivan III, D. Mauch, A. Bullick, C. Hettler, A. Neuber, and J. Dickens, Rev. Sci. Instrum. 84, 034702 (2013).

    Article  Google Scholar 

  22. P.H. Yih, V. Saxena, and A.J. Steckl, Phys. Status Solidi B 202, 605 (1997).

    Article  Google Scholar 

  23. Y. Han, S. Xue, T. Wu, Z. Wu, W. Guo, Y. Luo, Z. Hao, and C. Sun, J. Vac. Sci. Technol. A 22, 407 (2004).

    Article  Google Scholar 

  24. J. Sun and J. Kosel, Microelectron. Eng. 98, 222 (2012).

    Article  Google Scholar 

  25. A.E. Lita and J.E. Sanchez, Phys. Rev. B 61, 7692 (2000).

    Article  Google Scholar 

  26. D. Aurongzeb, M. Holtz, and L. Menon, Appl. Phys. Lett. 89, 092501 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Ekinci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekinci, H., Kuryatkov, V.V., Mauch, D.L. et al. Plasma Etching of n-Type 4H-SiC for Photoconductive Semiconductor Switch Applications. J. Electron. Mater. 44, 1300–1305 (2015). https://doi.org/10.1007/s11664-015-3658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3658-z

Keywords

Navigation