Skip to main content
Log in

Effect of Solution Treatment on Grain Growth and Precipitates in Electroslag Remelted 15Cr-22Ni Iron-Base Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 04 April 2022

This article has been updated

Abstract

The effects of solution temperature and soaking time on the grain growth and precipitates in a novel iron-base superalloy were investigated. Abnormal grain growth occurs at the solution temperature of 1473 K (1200 °C) irrespective of the niobium content and soaking time, which is attributed to the dissolution and coarsening of NbC precipitates. The amount of NbC particles increases with increasing niobium content of the superalloy, which has a strong pinning effect on grain boundary migration. Fe2Nb-type Laves phase is fully dissolved in the superalloy containing 0.64 and 1.00 mass pct Nb, whereas eutectic carbide NbCs are partially dissolved regardless of the solution temperatures. Both Fe2Nb-type Laves phase and eutectic carbide NbC are partially dissolved in the superalloy with 1.40 mass pct Nb after the solution at 1443 K (1170 °C) because of the competitive dissolution of Fe2Nb-type Laves phase and eutectic carbide NbC. The amount of eutectic carbides NbC after the solution at 1473 K (1200 °C) is larger than that at 1443 K (1170 °C) because of higher soluble niobium content in the superalloy matrix contributed by the complete dissolution of Fe2Nb-type Laves phase. A model for predicting the austenite grain growth of the superalloy with varying niobium contents during solution is developed. The role of niobium on the hardness of the superalloy was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

References

  1. M. Seifollahi, S.H. Razavi, Sh. Kheirandish, and S.M. Abbasi: Phys. Met. Metall., 2020, vol. 121, pp. 284–90.

    Article  CAS  Google Scholar 

  2. B.S. Rho, S.W. Nam, and X. Xie: J. Mater. Sci., 2002, vol. 37, pp. 203–09.

    Article  CAS  Google Scholar 

  3. P.D. Tiedra, Ó. Martín, and M. San-Juan: J. Alloys Compd., 2016, vol. 673, pp. 231–36.

    Article  Google Scholar 

  4. K. Kobayashi, K. Yamaguchi, M. Hayakawa, and M. Kimura: Int. J. Fatigue., 2008, vol. 30, pp. 1978–84.

    Article  CAS  Google Scholar 

  5. Y. Ning, S. Huang, M.W. Fu, and J. Dong: Mater. Charact., 2015, vol. 109, pp. 36–42.

    Article  CAS  Google Scholar 

  6. M. Zhao, Z. Guo, H. Liang, and L. Rong: Mater. Sci. Eng. A., 2010, vol. 527, pp. 5844–51.

    Article  Google Scholar 

  7. Y. Toda, Y. Nakamura, N. Harada, A. Kaseya. N. Kobata, Y. Yamabe-Mitarai, and O. Umezawa: Mater. Sci. Eng. A, 2020, vol. 797, pp. 140104.

  8. Z. Sun, P.D. Edmondson, and Y. Yamamoto: Acta Mater., 2018, vol. 144, pp. 716–27.

    Article  CAS  Google Scholar 

  9. S. Sui, Z. Li, C. Zhong, Q. Zhang, A. Gasser, J. Chen, Y. Chew, and G. Bi: Compos. Part B., 2021, vol. 215, p. 108819.

    Article  CAS  Google Scholar 

  10. S. Chen, C. Zhang, Z. Xia, H. Ishikawa, and Z. Yang: Mater. Sci. Eng. A., 2014, vol. 616, pp. 183–88.

    Article  CAS  Google Scholar 

  11. Q. Yu and Y. Sun: Mater. Sci. Eng. A., 2006, vol. 420, pp. 34–38.

    Article  Google Scholar 

  12. Y. Zhang, X. Li, Y. Liu, C. Liu, J. Dong, L. Yu, and H. Li: Mater. Charact., 2020, vol. 169, p. 110612.

    Article  CAS  Google Scholar 

  13. E. Pu, W. Zheng, Z. Song, K. Zhang, F. Yang, H. Lu, and H. Dong: Mater. Sci. Eng. A., 2017, vol. 705, pp. 335–47.

    Article  CAS  Google Scholar 

  14. B. Piekarski: Mater. Charact., 2001, vol. 47, pp. 181–6.

    Article  CAS  Google Scholar 

  15. H. Lu, H. G, W. Liang, J. Li, G. Zhang, and T. Li: Mater. Des., 2020, vol. 188, pp. 108477.

  16. Y. Zhang, H. Wang, H. Sun, and G. Chen: Mater. Sci. Eng. A., 2020, vol. 798, p. 140236.

    Article  CAS  Google Scholar 

  17. C. Dong, Z. Liu, Z. Chen, H. Bao, X. Wang, and Z. Liu: J. Alloys Compd., 2020, vol. 825, p. 154106.

    Article  CAS  Google Scholar 

  18. Y. Xu, J. Liu, Y. Zhao, and Y. Jiao: Philos. Mag., 2021, vol. 101, pp. 77–95.

    Article  CAS  Google Scholar 

  19. M. Shirdel, H. Mirzadeh, and M.H. Parsa: Mater. Charact., 2014, vol. 97, pp. 11–17.

    Article  CAS  Google Scholar 

  20. A. Chamanfar, S.M. Chentouf, M. Jahazi, and L.P. Lapierre-Boire: J. Mater. Res. Technol., 2020, vol. 9, pp. 12102–14.

    Article  CAS  Google Scholar 

  21. M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole: Acta Mater., 2012, vol. 60, pp. 1015–26.

    Article  CAS  Google Scholar 

  22. E.J. Palmiere, C.I. Garcia, and A.J. Ardo: Metall. Mater. Trans. A., 1994, vol. 25, pp. 277–86.

    Article  Google Scholar 

  23. P.R. Rios: Acta Mater., 1997, vol. 45, pp. 1785–89.

    Article  CAS  Google Scholar 

  24. P.R. Rios and M.E. Glicksman: Acta Mater., 2006, vol. 54, pp. 5313–21.

    Article  CAS  Google Scholar 

  25. V.Y. Novikov: Mater. Lett., 2012, vol. 68, pp. 413–15.

    Article  CAS  Google Scholar 

  26. D. Zhou, W. Zhao, H. Mao, Y. Hu, X. Xu, X. Sun, and Z. Lu: Mater. Sci. Eng. A., 2015, vol. 622, pp. 91–100.

    Article  CAS  Google Scholar 

  27. C. Wagner: Thermodynamics of Alloys, Addison-Wesley Press, Cambridge, 1952, p. 51.

    Google Scholar 

  28. R.C. Sharma, V.K. Lakshmanan, and J.S. Kirkaldy: Metall. Trans. A., 1984, vol. 15, pp. 545–53.

    Article  Google Scholar 

  29. G. Solis-Bravo, M. Merwin, and C.I. Garcia: Metals., 2020, vol. 10, p. 89.

    Article  CAS  Google Scholar 

  30. L.M. Fu, H.R. Wang, W. Wang, and A.D. Shan: Mater. Sci. Technol., 2011, vol. 27, pp. 996–1001.

    Article  Google Scholar 

  31. H.R. Wang and W. Wang: Mater. Sci. Technol., 2008, vol. 24, pp. 228–32.

    Article  CAS  Google Scholar 

  32. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids., 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  33. Q.L. Yong: Second Phases in Structural Steel, Metallurgical Industry Press, Beijing, 2006.

    Google Scholar 

  34. G.S. Rohrer: Metall. Mater. Trans. B., 2010, vol. 41, pp. 457–94.

    Article  Google Scholar 

  35. B.R. Patterson and Y. Liu: Metall. Trans. A., 1992, vol. 23, pp. 2481–82.

    Article  Google Scholar 

  36. T. Gladman and D. Dulieu: Met. Sci., 1974, vol. 8, pp. 167–76.

    Article  CAS  Google Scholar 

  37. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2012.

    Google Scholar 

  38. P.A. Beck, J.C. Kremer, and L. Demer: Phys. Rev., 1947, vol. 71, p. 555.

    Article  CAS  Google Scholar 

  39. E. Anelli: ISIJ Int., 1992, vol. 32, pp. 440–49.

    Article  CAS  Google Scholar 

  40. N. Raghunathan and T. Sheppard: Mater. Sci. Technol., 1989, vol. 5, pp. 542–47.

    Article  CAS  Google Scholar 

  41. K.A. Annan, C.W. Siyasiya, and W.E. Stumpf: ISIJ Int., 2018, vol. 58, pp. 333–39.

    Article  CAS  Google Scholar 

  42. W.J. Liu: Metall. Mater. Trans. A., 1995, vol. 26, pp. 1641–57.

    Article  Google Scholar 

  43. S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee: ISIJ Int., 2004, vol. 44, pp. 1230–37.

    Article  CAS  Google Scholar 

  44. E.O. Hall: Proc. Phys. Soc. Sect. B London., 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  45. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the National Natural Science Foundation of China (Grant Nos. 51874026 and 52074027) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-AT-20-13) is greatly acknowledged. The authors are also grateful to the financial support from the State Key Laboratory of Advanced Metallurgy (Grant No. 41621024).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbin Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figure 7b was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Shi, C., Zhu, X. et al. Effect of Solution Treatment on Grain Growth and Precipitates in Electroslag Remelted 15Cr-22Ni Iron-Base Superalloy. Metall Mater Trans B 53, 877–894 (2022). https://doi.org/10.1007/s11663-021-02421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02421-1

Navigation