Skip to main content
Log in

Effect of Li2O on Non-Isothermal Crystallization of Cuspidine in CaO–SiO2–CaF2 Glasses

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper presents the effects of Li2O addition on the non-isothermal melt crystallization of Cuspidine in CaO–SiO2–CaF2 glass. The addition of Li2O retarded crystallization at all cooling rates and converted the mode of nucleation from instantaneous to progressive. Two types of kinetic analysis indicated anti-Arrhenius behavior in the samples, which means that overall crystallization was governed by nucleation. Furthermore, the change in effective activation energy indicated that the addition of Li2O impeded the initial stage of crystal formation. Therefore, the addition of Li2O retarded the crystallization of CaO–SiO2–CaF2 melt as a result of suppression of nucleation. These results increase our understanding of melt crystallization kinetics of glass for use as mold flux in continuous casting steel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K Mills, A Fox, Z Li and R Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26-34.

    Article  CAS  Google Scholar 

  2. J Cho, H Shibata, T Emi and M Suzuki: ISIJ Int., 1998, vol. 38, pp. 268-275.

    Article  CAS  Google Scholar 

  3. J Cho, H Shibata, T Emi and M Suzuki: ISIJ Int., 1998, vol. 38, pp. 440-446.

    Article  CAS  Google Scholar 

  4. JW Cho, T Emi, H Shibata and M Suzuki: ISIJ Int., 1998, vol. 38, pp. 834-842.

    Article  CAS  Google Scholar 

  5. T-M Yeo, J-W Cho, M Alloni, S Casagrande and R Carli: J. Non-Cryst. Solids, 2020, vol. 529, pp. 119756.

    Article  CAS  Google Scholar 

  6. L Zhou, W Wang, F Ma, J Li, J Wei, H Matsuura and F Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43, pp. 354-362.

    Article  Google Scholar 

  7. T Watanabe, H Hashimoto, M Hayashi and K Nagata: ISIJ Int., 2008, vol. 48, pp. 925-933.

    Article  CAS  Google Scholar 

  8. M Dapiaggi, G Artioli, C Righi and R Carli: J. Non-Cryst. Solids, 2007, vol. 353, pp. 2852-2860.

    Article  CAS  Google Scholar 

  9. H Liu, G Wen and P Tang: ISIJ Int., 2009, vol. 49, pp. 843-850.

    Article  CAS  Google Scholar 

  10. R HG, C JW, W GH and S Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142-1150.

    Article  Google Scholar 

  11. Z Hao, W Chen and C Lippold: Metall. Mater. Trans. B, 2010, vol. 41, pp. 805-812.

    Article  Google Scholar 

  12. Z Wang, Q Shu and K Chou: Metall. Mater. Trans. B, 2013, vol. 44, pp. 606-613.

    Article  Google Scholar 

  13. L Zhou, H Li, W Wang, D Xiao, L Zhang and J Yu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2232-2240.

    Article  Google Scholar 

  14. W Wang, X Yan, L Zhou, S Xie and D Huang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 963-973.

    Article  Google Scholar 

  15. B Lu, K Chen, W Wang and B Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1496-1509.

    Article  Google Scholar 

  16. J.-H. Lee, T.-M. Yeo and J.-W. Cho: Ceram. Int., 2021, vol. 47, pp. 6773–6778.

    Article  CAS  Google Scholar 

  17. T Ozawa: Polymer, 1971, vol. 12, pp. 150-158.

    Article  CAS  Google Scholar 

  18. T Ozawa: J. Therm. Anal. Calorim., 1970, vol. 2, pp. 301-324.

    Article  CAS  Google Scholar 

  19. H.L. Friedman: in J. Polym. Sci. Part C: Polym. Symp., Wiley Online Library, 1964, pp. 183–95.

  20. M-D Seo, C-B Shi, H Wang, J-W Cho and S-H Kim: J. Non-Cryst. Solids, 2015, vol. 412, pp. 58-65.

    Article  CAS  Google Scholar 

  21. BJ Hwang, R Santhanam and YL Lin: J. Electrochem. Soc., 2000, vol. 147, pp. 2252.

    Article  CAS  Google Scholar 

  22. BJ Hwang, R Santhanam and YL Lin: Electrochim. Acta, 2001, vol. 46, pp. 2843-2853.

    Article  CAS  Google Scholar 

  23. M Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-224.

    Article  CAS  Google Scholar 

  24. M Joshi and B Butola: Polymer, 2004, vol. 45, pp. 4953-4968.

    Article  CAS  Google Scholar 

  25. T Bin, J Qu, L Liu, Y Feng, S Hu and X Yin: Thermochim. Acta, 2011, vol. 525, pp. 141-149.

    Article  CAS  Google Scholar 

  26. RC Zhang, Y Xu, Z Lu, M Min, Y Gao, Y Huang and A Lu: J. Appl. Polym. Sci., 2008, vol. 108, pp. 1829-1836.

    Article  CAS  Google Scholar 

  27. Y Liu, Q Yang and G Li: J. Appl. Polym. Sci., 2008, vol. 109, pp. 782-788.

    Article  CAS  Google Scholar 

  28. G.X. Chen and J.S. Yoon: J. Polym. Sci. Part B Polym. Phys., 2005, vol. 43, pp. 817–26.

  29. A Jeziorny: Polymer, 1978, vol. 19, pp. 1142-1144.

    Article  CAS  Google Scholar 

  30. C Jiao, Z Wang, X Liang and Y Hu: Polym. Test., 2005, vol. 24, pp. 71-80.

    Article  CAS  Google Scholar 

  31. P Supaphol: J. Appl. Polym. Sci., 2000, vol. 78, pp. 338-354.

    Article  CAS  Google Scholar 

  32. S Vyazovkin and N Sbirrazzuoli: J. Phys. Chem. B, 2003, vol. 107, pp. 882-888.

    Article  CAS  Google Scholar 

  33. M Brown, M Maciejewski, S Vyazovkin, R Nomen, J Sempere, A Burnham, J Opfermann, R Strey, H Anderson and A Kemmler: Thermochim. Acta, 2000, vol. 355, pp. 125-143.

    Article  CAS  Google Scholar 

  34. AH Chen: J. Non-Cryst. Solids, 1978, vol. 27, pp. 257-263.

    Article  CAS  Google Scholar 

  35. HE Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702-1706.

    Article  CAS  Google Scholar 

  36. K Matusita and S Sakka: J. Non-Cryst. Solids, 1980, vol. 38, pp. 741-746.

    Article  Google Scholar 

  37. M Maciejewski: Thermochim. Acta, 2000, vol. 355, pp. 145-154.

    Article  CAS  Google Scholar 

  38. S Vyazovkin and C A Wight: Thermochim. Acta, 1999, vol. 340, pp. 53-68.

    Article  Google Scholar 

  39. J.H. Flynn and L.A. Wall: J. Res. Natl Bur. Stand., Sect. A, 1966, vol. 70, pp. 487.

  40. M Venkatesh, P Ravi and S P Tewari: J. Phys. Chem. A, 2013, vol. 117, pp. 10162-10169.

    Article  CAS  Google Scholar 

  41. P Budrugeac: J. Therm. Anal. Calorim., 2002, vol. 68, pp. 131-139.

    Article  CAS  Google Scholar 

  42. GZ Papageorgiou, DS Achilias, DN Bikiaris and GP Karayannidis: Thermochim. Acta, 2005, vol. 427, pp. 117-128.

    Article  CAS  Google Scholar 

  43. C-W Huang, T-C Yang, K-C Hung, J-W Xu and J-H Wu: Polymers, 2018, vol. 10, pp. 382.

    Article  Google Scholar 

  44. M Run, H Song, C Yao and Y Wang: J. Appl. Polym. Sci., 2007, vol. 106, pp. 868-877.

    Article  CAS  Google Scholar 

  45. J. Schultz: Polym. Mater. Sci., 1974, pp. 293–358.

  46. D Turnbull and J C Fisher: J. Chem. Phys., 1949, vol. 17, pp. 71-73.

    Article  CAS  Google Scholar 

  47. JM Schultz, Polymers Material Sciences, Prentice Hall, Englewood Cliffs, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Wook Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 8, 2020; accepted April 9, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeo, Tm., Cho, JW. Effect of Li2O on Non-Isothermal Crystallization of Cuspidine in CaO–SiO2–CaF2 Glasses. Metall Mater Trans B 52, 2186–2193 (2021). https://doi.org/10.1007/s11663-021-02186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02186-7

Navigation